scholarly journals Streptococcus mutans and Actinomyces naeslundii Interaction in Dual-Species Biofilm

2020 ◽  
Vol 8 (2) ◽  
pp. 194 ◽  
Author(s):  
Rosa Virginia Dutra de Oliveira ◽  
Fernanda Salloume Sampaio Bonafé ◽  
Denise Madalena Palomari Spolidorio ◽  
Cristiane Yumi Koga-Ito ◽  
Aline Leite de Farias ◽  
...  

The study of bacterial interaction between Streptococcus mutans and Actinomyces naeslundii may disclose important features of biofilm interspecies relationships. The aim of this study was to characterize—with an emphasis on biofilm formation and composition and metabolic activity—single- and dual-species biofilms of S. mutans or A. naeslundii, and to use a drip flow reactor (DFR) to evaluate biofilm stress responses to 0.2% chlorhexidine diacetate (CHX). Single- and dual-species biofilms were grown for 24 h. The following factors were evaluated: cell viability, biomass and total proteins in the extracellular matrix, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide—“XTT”—reduction and lactic acid production. To evaluate stress response, biofilms were grown in DFR. Biofilms were treated with CHX or 0.9% sodium chloride (NaCl; control). Biofilms were plated for viability assessment. Confocal laser-scanning microscopy (CLSM) was also performed. Data analysis was carried out at 5% significance level. S. mutans viability and lactic acid production in dual-species biofilms were significantly reduced. S. mutans showed a higher resistance to CHX in dual-species biofilms. Total protein content, biomass and XTT reduction showed no significant differences between single- and dual-species biofilms. CLSM images showed the formation of large clusters in dual-species biofilms. In conclusion, dual-species biofilms reduced S. mutans viability and lactic acid production and increased S. mutans’ resistance to chlorhexidine.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Sanjay Kumar Tiwari ◽  
Suping Wang ◽  
Yannan Huang ◽  
Xuedong Zhou ◽  
Hockin H. K. Xu ◽  
...  

Quaternary ammonium methacrylates (QAMs) are useful antimicrobial compounds against oral bacteria. Here, we investigated the effects of two QAMs, dimethylaminododecyl methacrylate (DMADDM) and dimethylaminohexadecyl methacrylate (DMAHDM), on biofilm formation, survival and development of tolerance by biofilm, and survival and development of tolerance against QAMs after prolonged starvation. Enterococcus faecalis (E. faecalis), Streptococcus gordonii (S. gordonii), Lactobacillus acidophilus (L. acidophilus), and Actinomyces naeslundii (A. naeslundii) were used. Minimum inhibitory concentration (MIC) of QAMs against multispecies biofilm was determined. Biofilm formed under sub-MIC was observed by crystal violet staining and confocal laser scanning microscopy (CLSM). Metabolic activity was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactic acid production measurement. Development of tolerance was determined by MIC values before and after exposure to QAMs or after prolonged starvation. It was found that E. faecalis and S. gordonii could survive and form biofilm under sub-MIC of QAMs. Lactic acid production from biofilms formed under sub-MIC was significantly higher than control specimens ( p < 0.05 ). The exposure to sub-MIC of QAMs promoted biofilm formation, and prolonged starvation or prolonged contact with sub-MIC helped bacteria develop tolerance against killing by QAMs.


2020 ◽  
Vol 13 (06) ◽  
pp. 2050022
Author(s):  
Xiaoyue Liang ◽  
Zhaohui Zou ◽  
Zheng Zou ◽  
Changyi Li ◽  
Xiaoxi Dong ◽  
...  

The main objective of this study is to evaluate the antibacterial effect of antibacterial photodynamic therapy (aPDT) on Streptococcus mutans (S. mutans) biofilm model in vitro. The selection of photosensitizers is the key step for the efficacy of photodynamic therapy (PDT). However, no studies have been conducted in the oral field to compare the functional characteristics and application effects of PDT mediated by various photosensitizers. In this research, the antibacterial effect of Methylene blue (MB)/650[Formula: see text]nm laser and Hematoporphyrin monomethyl ether (HMME)/532[Formula: see text]nm laser on S. mutans biofilm was compared under different energy densities to provide experimental reference for the clinical application of the two PDT. The yield of lactic acid was analyzed by Colony forming unit (CFU) and spectrophotometry, and the complete biofilm activity was measured by Confocal Laser Scanning Microscopy (CLSM) to evaluate the bactericidal effect on each group. Based on the results of CFU, the bacterial colonies formed by 30.4[Formula: see text]J/cm2 532[Formula: see text]nm MB-aPDT group and 30.4[Formula: see text]J/cm2 532[Formula: see text]nm HMME-aPDT group were significantly less than those in other groups, and the bacterial colonies in HMME-aPDT group were less than those in HMME-aPDT group. Lactic acid production in all treatment groups except the photosensitizer group was statistically lower than that in the normal saline control group. The activity of bacterial plaque biofilm was significantly decreased in the two groups treated with 30.4[Formula: see text]J/cm2 aPDT. Therefore, aPDT suitable for energy measurement can kill S. mutans plaque biofilm, and MB-aPDT is better than HMME-aPDT.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beatriz Martines de Souza ◽  
Mayara Souza Silva ◽  
Aline Silva Braga ◽  
Patrícia Sanches Kerges Bueno ◽  
Paulo Sergio da Silva Santos ◽  
...  

AbstractThis in vitro study evaluated the protective effect of titanium tetrafluoride (TiF4) varnish and silver diamine fluoride (SDF) solution on the radiation-induced dentin caries. Bovine root dentin samples were irradiated (70 Gy) and treated as follows: (6 h): 4% TiF4 varnish; 5.42% NaF varnish; 30% SDF solution; placebo varnish; or untreated (negative control). Microcosm biofilm was produced from human dental biofilm (from patients with head-neck cancer) mixed with McBain saliva for the first 8 h. After 16 h and from day 2 to day 5, McBain saliva (0.2% sucrose) was replaced daily (37 °C, 5% CO2) (biological triplicate). Demineralization was quantified by transverse microradiography (TMR), while biofilm was analyzed by using viability, colony-forming units (CFU) counting and lactic acid production assays. The data were statistically analyzed by ANOVA (p < 0.05). TiF4 and SDF were able to reduce mineral loss compared to placebo and the negative control. TiF4 and SDF significantly reduced the biofilm viability compared to negative control. TiF4 significantly reduced the CFU count of total microorganism, while only SDF affected total streptococci and mutans streptococci counts. The varnishes induced a reduction in lactic acid production compared to the negative control. TiF4 and SDF may be good alternatives to control the development of radiation-induced dentin caries.


Heliyon ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. e07079
Author(s):  
Joel Romial Ngouénam ◽  
Chancel Hector Momo Kenfack ◽  
Edith Marius Foko Kouam ◽  
Pierre Marie Kaktcham ◽  
Rukesh Maharjan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document