scholarly journals Characterizing Fungal Decay of Beech Wood: Potential for Biotechnological Applications

2021 ◽  
Vol 9 (2) ◽  
pp. 247
Author(s):  
Ehsan Bari ◽  
Katie Ohno ◽  
Nural Yilgor ◽  
Adya P. Singh ◽  
Jeffrey J. Morrell ◽  
...  

The biotechnological potential of nine decay fungi collected from stored beech logs at a pulp and paper factory yard in Northern Iran was investigated. Beech blocks exposed to the fungi in a laboratory decay test were used to study changes in cell wall chemistry using both wet chemistry and spectroscopic methods. Pleurotus ostreatus, P. pulmonarius, and Lentinus sajor-caju caused greater lignin breakdown compared to other white-rot fungi, which led to a 28% reduction in refining energy. Trametesversicolor caused the greatest glucan loss, while P. ostreatus and L. sajor-caju were associated with the lowest losses of this sugar. Fourier transform infrared spectroscopy (FTIR) analyses indicated that white-rot fungi caused greater lignin degradation in the cell walls via the oxidation aromatic rings, confirming the chemical analysis. The rate of cellulose and lignin degradation by the T.versicolor and Pleurotus species was high compared to the other decay fungi analyzed in this study. Based on the above information, we propose that, among the fungi tested, P. ostreatus (27.42% lignin loss and 1.58% cellulose loss) and L. sajor-caju (29.92% lignin loss and 5.95% cellulose loss) have the greatest potential for biopulping.

2020 ◽  
Vol 71 (1) ◽  
pp. 47-53
Author(s):  
Yaghoob Azimi ◽  
Mohsen Bahmani ◽  
Hamid Reza Riyahi Bakhtyari ◽  
Ali Jafari

The aim of this study was to determine the destructive capabilities of the two white rot fungi Pleurotus cornucopiae (Pc) and P. eryngii (Pe) compared with the standard fungus Trametes versicolor (Tv) on beech wood samples after 60 days of incubation. Understanding of the white rot decay is important as it is necessary for the development of effective solutions for wood protection. Measurements of mass loss, chemical, mechanical properties and light microscopical investigations were conducted prior to and after incubation. Mass loss of samples was found to be 9-22 % depending on fungi species. Impact bending strength is not as sensitive as presumed in classical literature. Light microscopy analysis revealed that decay patterns were similar for both fungi. Wood cell wall thinning, fungal colonization hyphae were also the same for both fungi. Results indicated considerable wood attack by both Pleurotus species, Pc being more destructive than Pe.


1985 ◽  
Vol 63 (2) ◽  
pp. 337-339 ◽  
Author(s):  
Elmer L. Schmidt

Influences of eight saturated aliphatic acids (C5–C10, C12, and C16) on basidiospores of four isolates of wood-decay fungi (Poria tenuis and Trametes hispida, white rot fungi, and two isolates of the brown rot fungus Gloeophyllum trabeum) were observed in vitro. Spore responses after 24 h on malt extract agar containing 10, 102 or 103 ppm of each acid included normal germination, delay of germ tube emergence, vacuolation and degeneration of spore cytoplasm, and prevention of germ tube development without spore destruction. Acids of chain length C5–C10 prevented spore germination and killed spores of all fungi at concentrations of 20–50 ppm in media, whereas other acids tested were less active. Spore germination assay of decay fungi may prove useful as a screening tool to compare potency of wood preservatives.


2001 ◽  
Vol 101 (11) ◽  
pp. 3397-3414 ◽  
Author(s):  
Rimko ten Have ◽  
Pauline J. M. Teunissen

Holzforschung ◽  
2017 ◽  
Vol 71 (11) ◽  
pp. 913-918
Author(s):  
Tomoko Sugimoto ◽  
Shuji Hosoya ◽  
Koichi Yamamoto ◽  
Satoshi Oosawa ◽  
Akihiro Tanaka ◽  
...  

AbstractOzonized Japanese cedar wood meal was evaluated as a feedstock for compost. The composting experiment performed in a 1.8 m3tank during a 4-week period showed that the decomposition of organics was accelerated by the ozonation of wood meal during thermophilic phase. The same is true for decay test of white-rot (WR) fungus. The tested brown-rot (BR) fungus did not show any effect. Accordingly, the lignin degradation by ozone is advantageous for composting. In addition, liberation of ammonia, one source of odor development, was suppressed during the thermophilic phase of composting of ozonized wood meal.


1983 ◽  
Vol 61 (1) ◽  
pp. 171-173 ◽  
Author(s):  
E. L. Schmidt ◽  
D. W. French

Successive collections of basidiospores, produced in culture from the same hymenial areas of four species of wood decay fungi, were tested for spore germination percentage on malt extract agar under controlled conditions. Spores from white rot fungi retained high germination levels after 5 weeks of spore production, but germination averages for brown rot fungi decreased by more than 50%. Such variation should be considered in wood pathology research using spore germination bioassay.


2002 ◽  
Vol 48 (10) ◽  
pp. 857-870 ◽  
Author(s):  
Vishal Shah ◽  
Frantisek Nerud

With global attention and research now focused on looking for the abatement of pollution, white-rot fungi is one of the hopes of the future. The lignin-degrading ability of these fungi have been the focus of attention for many years and have been exploited for a wide array of human benefits. This review highlights the various enzymes produced by white-rot fungi for lignin degradation, namely laccases, peroxidases, aryl alcohol oxidase, glyoxal oxidase, and pyranose oxidase. Also discussed are the various radicals and low molecular weight compounds that are being produced by white-rot fungi and its role in lignin degradation. A brief summary on the developments in research of decolorization of dyes using white-rot fungi has been made.Key words: lignin degradation, white-rot fungi, laccase, peroxidase, radicals, dye decolorization.


2016 ◽  
Vol 82 (14) ◽  
pp. 4387-4400 ◽  
Author(s):  
Oleksandr Skyba ◽  
Dan Cullen ◽  
Carl J. Douglas ◽  
Shawn D. Mansfield

ABSTRACTIdentification of the specific genes and enzymes involved in the fungal degradation of lignocellulosic biomass derived from feedstocks with various compositions is essential to the development of improved bioenergy processes. In order to elucidate the effect of substrate composition on gene expression in wood-rotting fungi, we employed microarrays based on the annotated genomes of the brown- and white-rot fungi,Rhodonia placenta(formerlyPostia placenta) andPhanerochaete chrysosporium, respectively. We monitored the expression of genes involved in the enzymatic deconstruction of the cell walls of three 4-year-oldPopulus trichocarpa(poplar) trees of genotypes with distinct cell wall chemistries, selected from a population of several hundred trees grown in a common garden. The woody substrates were incubated with wood decay fungi for 10, 20, and 30 days. An analysis of transcript abundance in all pairwise comparisons highlighted 64 and 84 differentially expressed genes (>2-fold,P< 0.05) inP. chrysosporiumandP. placenta, respectively. Cross-fungal comparisons also revealed an array of highly differentially expressed genes (>4-fold,P< 0.01) across different substrates and time points. These results clearly demonstrate that gene expression profiles ofP. chrysosporiumandP. placentaare influenced by wood substrate composition and the duration of incubation. Many of the significantly expressed genes encode “proteins of unknown function,” and determining their role in lignocellulose degradation presents opportunities and challenges for future research.IMPORTANCEThis study describes the variation in expression patterns of two wood-degrading fungi (brown- and white-rot fungi) during colonization and incubation on three different naturally occurring poplar substrates of differing chemical compositions, over time. The results clearly show that the two fungi respond differentially to their substrates and that several known and, more interestingly, currently unknown genes are highly misregulated in response to various substrate compositions. These findings highlight the need to characterize several unknown proteins for catalytic function but also as potential candidate proteins to improve the efficiency of enzymatic cocktails to degrade lignocellulosic substrates in industrial applications, such as in a biochemically based bioenergy platform.


2021 ◽  
Author(s):  
Aleksandar Knežević ◽  
Ivana Đokić ◽  
Tomislav Tosti ◽  
Slađana Popović ◽  
Dušanka Milojković-Opsenica ◽  
...  

Abstract The aim of the study was comparative analysis of degradation of wheat straw lignin by white-rot fungi and its implications on the efficiency of enzymatic hydrolysis of holocellulose. Cyclocybe cylindracea, Ganoderma resinaceum, Irpex lacteus, Pleurotus ostreatus and Trametes versicolor were the species studied. Peroxidases were predominantly responsible for lignin degradation even though high laccase activities were detected, except in the case of Irpex lacteus where laccase activity was not detected. Studied fungal species showed various ability to degrade lignin in wheat straw which further affected release of reducing sugars during enzymatic saccharification. The highest rate of lignin degradation was noticed in sample pretreated with Irpex lacteus (50.9 ± 4.1%). Among all tested species only Ganoderma resinaceum was suitable lignin degrader with the 2-fold higher hydrolysis yield (51.1 ± 4.7%) than in the control, and could have significant biotechnological application due to lower cellulose loss. A key mechanism of carbohydrate component convertibility enhancement was lignin removal in the biomass. Long time consumption, the low sugar yields and unpredictable fungal response still remain the challenge of the fungal pretreatment process.


BioResources ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 6231-6246
Author(s):  
Claudia M. Ibáñez ◽  
Alvaro Camargo ◽  
Carlos Mantero ◽  
Ricardo Faccio ◽  
Antonio Malanga ◽  
...  

The effectiveness was evaluated for an established wood preservative, zinc borate, prepared in an agitating bead mill to extensively reduce its particle size. The generated micro- or nano-particles of zinc borate were characterized by X-ray powder diffraction, and the particle size distribution was determined to evaluate the effect of milling. Then the fungicidal effectiveness of the zinc borate of both milled and unmilled samples were assayed against brown- and white-rot fungi, on culture medium and on conifer and hardwood as substrates. Treated wood samples were subjected to leaching tests. Scanning electron microscopic images of wood samples were examined to analyze the distribution of zinc borate within the wood. The micronized zinc product kept its crystal structure intact, and it increased the proportion of particles with diameters below 100 nm by 25% when compared to the unmilled product. Malt extract-agar medium supplemented with 2.5% of w/w milled and unmilled zinc borate inhibited fungal growth tested. Both milled and unmilled zinc borate protected the wood when not subjected to leaching. The milled sample of zinc borate improved resistance to leaching, which would allow its application in environments of high moisture content; however, it did not improve the fungicidal action against decay fungi.


Holzforschung ◽  
1993 ◽  
Vol 47 (2) ◽  
pp. 91-96 ◽  
Author(s):  
R. Bechtold ◽  
A.E. González ◽  
G. Almendros ◽  
M.J. Martínez ◽  
A.T. Martínez

Sign in / Sign up

Export Citation Format

Share Document