scholarly journals Diguanylate Cyclase GdpX6 with c-di-GMP Binding Activity Involved in the Regulation of Virulence Expression in Xanthomonas oryzae pv. oryzae

2021 ◽  
Vol 9 (3) ◽  
pp. 495
Author(s):  
Weiwei Yan ◽  
Yiming Wei ◽  
Susu Fan ◽  
Chao Yu ◽  
Fang Tian ◽  
...  

Cyclic diguanylate monophosphate (c-di-GMP) is a secondary messenger present in bacteria. The GGDEF-domain proteins can participate in the synthesis of c-di-GMP as diguanylate cyclase (DGC) or bind with c-di-GMP to function as a c-di-GMP receptor. In the genome of Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight of rice, there are 11 genes that encode single GGDEF domain proteins. The GGDEF domain protein, PXO_02019 (here GdpX6 [GGDEF-domain protein of Xoo6]) was characterized in the present study. Firstly, the DGC and c-di-GMP binding activity of GdpX6 was confirmed in vitro. Mutation of the crucial residues D403 residue of the I site in GGDEF motif and E411 residue of A site in GGDEF motif of GdpX6 abolished c-di-GMP binding activity and DGC activity of GdpX6, respectively. Additionally, deletion of gdpX6 significantly increased the virulence, swimming motility, and decreased sliding motility and biofilm formation. In contrast, overexpression of GdpX6 in wild-type PXO99A strain decreased the virulence and swimming motility, and increased sliding motility and biofilm formation. Mutation of the E411 residue but not D403 residue of the GGDEF domain in GdpX6 abolished its biological functions, indicating the DGC activity to be imperative for its biological functions. Furthermore, GdpX6 exhibited multiple subcellular localization in bacterial cells, and D403 or E411 did not contribute to the localization of GdpX6. Thus, we concluded that GdpX6 exhibits DGC activity to control the virulence, swimming and sliding motility, and biofilm formation in Xoo.

2011 ◽  
Vol 77 (6) ◽  
pp. 2196-2198 ◽  
Author(s):  
Shauna Rakshe ◽  
Maija Leff ◽  
Alfred M. Spormann

ABSTRACTThe GGDEF domain protein MxdA, which is important for biofilm formation inShewanella oneidensisMR-1, was hypothesized to possess diguanylate cyclase activity. Here, we demonstrate that while MxdA controls the cellular level of c-di-GMP inS. oneidensis, it modulates the c-di-GMP pool indirectly.


2008 ◽  
Vol 190 (15) ◽  
pp. 5178-5189 ◽  
Author(s):  
Linda M. Holland ◽  
Sinéad T. O'Donnell ◽  
Dmitri A. Ryjenkov ◽  
Larissa Gomelsky ◽  
Shawn R. Slater ◽  
...  

ABSTRACT Cyclic dimeric GMP (c-di-GMP) is an important biofilm regulator that allosterically activates enzymes of exopolysaccharide biosynthesis. Proteobacterial genomes usually encode multiple GGDEF domain-containing diguanylate cyclases responsible for c-di-GMP synthesis. In contrast, only one conserved GGDEF domain protein, GdpS (for GGDEF domain protein from Staphylococcus), and a second protein with a highly modified GGDEF domain, GdpP, are present in the sequenced staphylococcal genomes. Here, we investigated the role of GdpS in biofilm formation in Staphylococcus epidermidis. Inactivation of gdpS impaired biofilm formation in medium supplemented with NaCl under static and flow-cell conditions, whereas gdpS overexpression complemented the mutation and enhanced wild-type biofilm development. GdpS increased production of the icaADBC-encoded exopolysaccharide, poly-N-acetyl-glucosamine, by elevating icaADBC mRNA levels. Unexpectedly, c-di-GMP synthesis was found to be irrelevant for the ability of GdpS to elevate icaADBC expression. Mutagenesis of the GGEEF motif essential for diguanylate cyclase activity did not impair GdpS, and the N-terminal fragment of GdpS lacking the GGDEF domain partially complemented the gdpS mutation. Furthermore, heterologous diguanylate cyclases expressed in trans failed to complement the gdpS mutation, and the purified GGDEF domain from GdpS possessed no diguanylate cyclase activity in vitro. The gdpS gene from Staphylococcus aureus exhibited similar characteristics to its S. epidermidis ortholog, suggesting that the GdpS-mediated signal transduction is conserved in staphylococci. Therefore, GdpS affects biofilm formation through a novel c-di-GMP-independent mechanism involving increased icaADBC mRNA levels and exopolysaccharide biosynthesis. Our data raise the possibility that staphylococci cannot synthesize c-di-GMP and have only remnants of a c-di-GMP signaling pathway.


2016 ◽  
Vol 120 (6) ◽  
pp. 1646-1657 ◽  
Author(s):  
F. Yang ◽  
S. Qian ◽  
F. Tian ◽  
H. Chen ◽  
W. Hutchins ◽  
...  

2018 ◽  
Author(s):  
Amy E. Baker ◽  
Shanice S. Webster ◽  
Andreas Diepold ◽  
Sherry L. Kuchma ◽  
Eric Bordeleau ◽  
...  

AbstractFlagellar motility is critical for surface attachment and biofilm formation in many bacteria. A key regulator of flagellar motility in Pseudomonas aeruginosa and other microbes is cyclic diguanylate (c-di-GMP). High levels of this second messenger repress motility and stimulate biofilm formation. C-di-GMP levels regulate motility in P. aeruginosa in part by influencing the localization of its two flagellar stator sets, MotAB and MotCD. Here we show that just as c-di-GMP can influence the stators, stators can impact c-di-GMP levels. We demonstrate that the swarming motility-driving stator MotC physically interacts with the transmembrane region of the diguanylate cyclase SadC. Furthermore, we demonstrate that this interaction is capable of stimulating SadC activity. We propose a model by which the MotCD stator set interacts with SadC to stimulate c-di-GMP production in conditions not permissive to motility. This regulation implies a positive feedback loop in which c-di-GMP signaling events cause MotCD stators to disengage from the motor; then disengaged stators stimulate c-di-GMP production to reinforce a biofilm mode of growth. Our studies help define the bidirectional interactions between c-di-GMP and the motility machinery.Importance.The ability of bacterial cells to control motility during early steps in biofilm formation is critical for the transition to a non-motile, biofilm lifestyle. Recent studies have clearly demonstrated the ability of c-di-GMP to control motility via a number of mechanisms, including through controlling transcription of motility-related genes and modulating motor function. Here we provide evidence that motor components can in turn impact c-di-GMP levels. We propose that communication between motor components and c-di-GMP synthesis machinery allows the cell to have a robust and sensitive switching mechanism to control motility during early events in biofilm formation.


PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e87608 ◽  
Author(s):  
Francisco Martínez-Granero ◽  
Ana Navazo ◽  
Emma Barahona ◽  
Miguel Redondo-Nieto ◽  
Elena González de Heredia ◽  
...  

2016 ◽  
Vol 198 (18) ◽  
pp. 2524-2535 ◽  
Author(s):  
Egidio Lacanna ◽  
Colette Bigosch ◽  
Volkhard Kaever ◽  
Alex Boehm ◽  
Anke Becker

ABSTRACTDgcZ is the main cyclic dimeric GMP (c-di-GMP)-producing diguanylate cyclase (DGC) controlling biosynthesis of the exopolysaccharide poly-β-1,6-N-acetylglucosamine (poly-GlcNAc or PGA), which is essential for surface attachment ofEscherichia coli. Although the complex regulation of DgcZ has previously been investigated, its primary role and the physiological conditions under which the protein is active are not fully understood. Transcription ofdgcZis regulated by the two-component system CpxAR activated by the lipoprotein NlpE in response to surface sensing. Here, we show that the negative effect of acpxRmutation and the positive effect ofnlpEoverexpression on biofilm formation both depend on DgcZ. Coimmunoprecipitation data suggest several potential interaction partners of DgcZ. Interaction with FrdB, a subunit of the fumarate reductase complex (FRD) involved in anaerobic respiration and in control of flagellum assembly, was further supported by a bacterial-two-hybrid assay. Furthermore, the FRD complex was required for the increase in DgcZ-mediated biofilm formation upon induction of oxidative stress by addition of paraquat. A DgcZ-mVENUS fusion protein was found to localize at one bacterial cell pole in response to alkaline pH and carbon starvation. Based on our data and previous knowledge, an integrative role of DgcZ in regulation of surface attachment is proposed. We speculate that both DgcZ-stimulated PGA biosynthesis and interaction of DgcZ with the FRD complex contribute to impeding bacterial escape from the surface.IMPORTANCEBacterial cells can grow by clonal expansion to surface-associated biofilms that are ubiquitous in the environment but also constitute a pervasive problem related to bacterial infections. Cyclic dimeric GMP (c-di-GMP) is a widespread bacterial second messenger involved in regulation of motility and biofilm formation, and plays a primary role in bacterial surface attachment.E. colipossesses a plethora of c-di-GMP-producing diguanylate cyclases, including DgcZ. Our study expands the knowledge on the role of DgcZ in regulation of surface attachment and suggests that it interconnects surface sensing and adhesion via multiple routes.


2014 ◽  
Vol 27 (6) ◽  
pp. 578-589 ◽  
Author(s):  
Fenghuan Yang ◽  
Fang Tian ◽  
Xiaotong Li ◽  
Susu Fan ◽  
Huamin Chen ◽  
...  

Degenerate GGDEF and EAL domain proteins represent major types of cyclic diguanylic acid (c-di-GMP) receptors in pathogenic bacteria. Here, we characterized a FimX-like protein (Filp) which possesses both GGDEF and EAL domains in Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice. Both in silico analysis and enzyme assays indicated that the GGDEF and EAL domains of Filp were degenerate and enzymatically inactive. However, Filp bound to c-di-GMP efficiently within the EAL domain, where Q477, E653, and F654 residues were crucial for the binding. Deletion of the filp gene in X. oryzae pv. oryzae resulted in attenuated virulence in rice and reduced type III secretion system (T3SS) gene expression. Complementation analysis with different truncated proteins indicated that REC, PAS, and EAL domains but not the GGDEF domain were required for the full activity of Filp in vivo. In addition, a PilZ-domain protein (PXO_02715) was identified as a Filp interactor by yeast two-hybrid and glutathione-S-transferase pull-down assays. Deletion of the PXO_02715 gene demonstrated changes in bacterial virulence and T3SS gene expression similar to Δfilp. Moreover, both mutants were impaired in their ability to induce hypersensitive response in nonhost plants. Thus, we concluded that Filp was a novel c-di-GMP receptor of X. oryzae pv. oryzae, and its function to regulate bacterial virulence expression might be via the interaction with PXO_02715.


2007 ◽  
Vol 189 (22) ◽  
pp. 8165-8178 ◽  
Author(s):  
Sherry L. Kuchma ◽  
Kimberly M. Brothers ◽  
Judith H. Merritt ◽  
Nicole T. Liberati ◽  
Frederick M. Ausubel ◽  
...  

ABSTRACT The intracellular signaling molecule, cyclic-di-GMP (c-di-GMP), has been shown to influence bacterial behaviors, including motility and biofilm formation. We report the identification and characterization of PA4367, a gene involved in regulating surface-associated behaviors in Pseudomonas aeruginosa. The PA4367 gene encodes a protein with an EAL domain, associated with c-di-GMP phosphodiesterase activity, as well as a GGDEF domain, which is associated with a c-di-GMP-synthesizing diguanylate cyclase activity. Deletion of the PA4367 gene results in a severe defect in swarming motility and a hyperbiofilm phenotype; thus, we designate this gene bifA, for biofilm formation. We show that BifA localizes to the inner membrane and, in biochemical studies, that purified BifA protein exhibits phosphodiesterase activity in vitro but no detectable diguanylate cyclase activity. Furthermore, mutational analyses of the conserved EAL and GGDEF residues of BifA suggest that both domains are important for the observed phosphodiesterase activity. Consistent with these data, the ΔbifA mutant exhibits increased cellular pools of c-di-GMP relative to the wild type and increased synthesis of a polysaccharide produced by the pel locus. This increased polysaccharide production is required for the enhanced biofilm formed by the ΔbifA mutant but does not contribute to the observed swarming defect. The ΔbifA mutation also results in decreased flagellar reversals. Based on epistasis studies with the previously described sadB gene, we propose that BifA functions upstream of SadB in the control of biofilm formation and swarming.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Bridgett K. Ryan-Payseur ◽  
Nancy E. Freitag

ABSTRACT Bacillus subtilis has the capacity to choose between two mutually exclusive lifestyles: biofilm formation and flagellum-mediated swimming motility. Interestingly, this choice is made at the individual cell level, with bacterial cells in a population expressing genes required for biofilm formation or genes required for swimming motility but not both. A bistable switch controls the biofilm-versus-swimming decision, resulting in an evolutionarily favorable strategy known as “bet hedging” that ensures that subpopulations of bacteria continue to grow as conditions change and/or become unfavorable. In a recent issue of mBio, J. Kampf and colleagues (mBio 9:e01464-18, 2018, https://doi.org/10.1128/mBio.01464-18) reported the use of a combination of genetics and microfluidics to reveal that the interplay that occurs between the SinR and YmdB proteins underlies the B. subtilis choice between biofilm formation and swimming motility. Their report suggests that B. subtilis experiences selective pressure to form biofilms while maintaining reserve cell subpopulations with the capacity to swim away.


Sign in / Sign up

Export Citation Format

Share Document