scholarly journals Lutzomyia longipalpis Antimicrobial Peptides: Differential Expression during Development and Potential Involvement in Vector Interaction with Microbiota and Leishmania

2021 ◽  
Vol 9 (6) ◽  
pp. 1271
Author(s):  
Erich Loza Telleria ◽  
Bruno Tinoco-Nunes ◽  
Tereza Leštinová ◽  
Lívia Monteiro de Avellar ◽  
Antonio Jorge Tempone ◽  
...  

Antimicrobial peptides (AMPs) are produced to control bacteria, fungi, protozoa, and other infectious agents. Sand fly larvae develop and feed on a microbe-rich substrate, and the hematophagous females are exposed to additional pathogens. We focused on understanding the role of the AMPs attacin (Att), cecropin (Cec), and four defensins (Def1, Def2, Def3, and Def4) in Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. Larvae and adults were collected under different feeding regimens, in addition to females artificially infected by Leishmania infantum. AMPs’ gene expression was assessed by qPCR, and gene function of Att and Def2 was investigated by gene silencing. The gene knockdown effect on bacteria and parasite abundance was evaluated by qPCR, and parasite development was verified by light microscopy. We demonstrate that L. longipalpis larvae and adults trigger AMPs expression during feeding, which corresponds to an abundant presence of bacteria. Att and Def2 expression were significantly increased in Leishmania-infected females, while Att suppression favored bacteria growth. In conclusion, L. longipalpis AMPs’ expression is tuned in response to bacteria and parasites but does not seem to interfere with the Leishmania cycle.

2019 ◽  
Author(s):  
Iliano V. Coutinho-Abreu ◽  
Tiago D. Serafim ◽  
Claudio Meneses ◽  
Shaden Kamhawi ◽  
Fabiano Oliveira ◽  
...  

AbstractPromastigotes of Leishmania infantum undergo a series of extracellular developmental stages inside the natural sand fly vector Lutzomyia longipalpis to reach the infectious stage, the metacyclic promastigote. There is limited information regarding the expression profile of L. infantum developmental stages inside the sand fly vector, and molecular markers that can distinguish the different parasite stages are lacking. We performed RNAseq on unaltered midguts of the sand fly Lutzomyia longipalpis after infection with L. infantum parasites. RNAseq was carried out at various time points throughout parasite development. Principal component analysis mapped the sequences corresponding to the procyclic, nectomonad, leptomonad or metacyclic promastigote stage into distinct positions, with the procyclic stage being the most divergent population. Transcriptional levels across genes varied on average between 10- to 100-fold. Comparison between procyclic and nectomonad promastigotes resulted in 836 differentially expressed (DE) genes; between nectomonad and leptomonad promastigotes in 113 DE genes; and between leptomonad and metacyclic promastigotes in 302 DE genes. Most of the DE genes do not overlap across stages, highlighting the uniqueness of each stage. Furthermore, the different stages of Leishmania parasites exhibited specific transcriptional enrichment across chromosomes. Using the transcriptional signatures exhibited by distinct Leishmania stages during their development in the sand fly midgut, we determined the genes predominantly enriched in each stage, identifying multiple stage-specific markers for L. Infantum. Leading stage-specific marker candidates include genes encoding a zinc transporter in procyclics, a beta-fructofuranidase in nectomonads, a surface antigen-like protein in leptomonads, and an amastin-like surface protein in metacyclics. Overall, these findings demonstrate the transcriptional plasticity of the Leishmania parasite inside the sand fly vector and provide a repertoire of stage-specific markers for further development as molecular tools for epidemiological studies.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Deboraci Brito Prates ◽  
Théo Araújo-Santos ◽  
Cláudia Brodskyn ◽  
Manoel Barral-Netto ◽  
Aldina Barral ◽  
...  

When an haematophagous sand fly vector insect bites a vertebrate host, it introduces its mouthparts into the skin and lacerates blood vessels, forming a hemorrhagic pool which constitutes an intricate environment of cell interactions. In this scenario, the initial performance of host, parasite, and vector “authors” will heavily influence the course ofLeishmaniainfection. Recent advances in vector-parasite-host interaction have elucidated “co-authors” and “new roles” not yet described. We review here the stimulatory role ofLutzomyia longipalpissaliva leading to inflammation and try to connect them in an early context ofLeishmaniainfection.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Margarete Martins dos Santos Afonso ◽  
Rosemere Duarte ◽  
José Carlos Miranda ◽  
Lindenbergh Caranha ◽  
Elizabeth Ferreira Rangel

The aim of this study was to identify potential blood feeding sources ofL. (L.) longipalpisspecimens from populations in Northeastern Brazil, endemic areas of American Visceral Leishmaniasis (AVL) and its correlation with the transmission ofL. (L.) i. chagasi. The ELISA technique was applied using bird, dog, goat, opossum, equine, feline, human, sheep, and rodent antisera to analyze 609 females, resulting in an overall positivity of 60%. In all municipalities, females showed higher positivity for bird followed by dog antiserum and sand fly specimens were also positive for equine, feline, human, sheep, goat, opossum, and rodent antisera. The finding for 17 combinations of two or three types of blood in some females corroborates the opportunistic habit of this sand fly species. The results demonstrating the association betweenL. (L.) longipalpisand opossum suggest the need for further evaluation of the real role of this synanthropic mammal in the eco-epidemiology of AVL.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Iliano V. Coutinho-Abreu ◽  
James Oristian ◽  
Waldionê de Castro ◽  
Timothy R. Wilson ◽  
Claudio Meneses ◽  
...  

It is well established that the presence of LPG is sufficient to define the vector competence of restrictive sand fly vectors with respect to Leishmania parasites. However, the permissiveness of other sand flies with respect to multiple Leishmania species suggests that other factors might define vector competence for these vectors. In this study, we investigated the underpinnings of Leishmania infantum survival and development in its natural vector, Lutzomyia longipalpis. We found that LPG-mediated midgut binding persists in late-stage parasites. This observation is of relevance for the understanding of vector-parasite molecular interactions and suggests that only a subset of infective metacyclic-stage parasites (metacyclics) lose their ability to attach to the midgut, with implications for parasite transmission dynamics. However, our data also demonstrate that LPG is not a determining factor in Leishmania infantum retention in the midgut of Lutzomyia longipalpis, a permissive vector. Rather, LPG appears to be more important in protecting some parasite strains from the toxic environment generated during blood meal digestion in the insect gut. Thus, the relevance of LPG in parasite development in permissive vectors appears to be a complex issue and should be investigated on a strain-specific basis.


2020 ◽  
Author(s):  
Iliano V. Coutinho-Abreu ◽  
James Oristian ◽  
Waldionê de Castro ◽  
Timothy R. Wilson ◽  
Claudio Meneses ◽  
...  

AbstractThe major surface lipophosphoglycan (LPG) of Leishmania parasites is critical to vector competence in restrictive sand fly vectors by mediating Leishmania attachment to the midgut epithelium, considered essential to parasite survival and development. However, the relevance of LPG for sand flies that harbor multiple species of Leishmania remains elusive. We tested binding of Leishmania infantum wild type (WT), LPG-defective (Δlpg1 mutants) and add-back lines (Δlpg1 + LPG1) to sand fly midguts in vitro and their survival in Lutzomyia longipalpis sand flies in vivo. Le. infantum WT parasites attached to the Lu. longipalpis midgut in vitro with late-stage parasites binding to midguts in significantly higher numbers compared to early-stage stage promastigotes. Δlpg1 mutants did not bind to Lu. longipalpis midguts, and this was rescued in the Δlpg1 + LPG1 lines, indicating that midgut binding is mediated by LPG. When Lu. longipalpis sand flies were infected with either Le. infantum WT, Δlpg1, or Δlpg1 + LPG1 of the BH46 or BA262 strains, the BH46 Δlpg1 mutant, but not the BA262 Δlpg1 mutant, survived and grew to similar numbers as the WT and Δlpg1 + LPG1 lines. Exposure of BH46 and BA262 Δlpg1 mutants to blood engorged midgut extracts led to the mortality of the BA262 Δlpg1 but not the BH46 Δlpg1 parasites. These findings suggest that Le. infantum LPG protects parasites on a strain-specific basis early in infection, likely against toxic components of blood digestion, however, it is not necessary to prevent Le. infantum evacuation along with the feces in the permissive vector Lu. longipalpis.IMPORTANCEIt is well established that LPG is sufficient to define the vector competence of restrictive sand fly vectors to Leishmania parasites. However, the permissiveness of other sand flies to multiple Leishmania species suggests that other factors might define vector competence for these vectors. In this study, we investigated the underpinnings of Leishmania infantum survival and development in its natural vector Lutzomyia longipalpis. We found out that LPG-mediated midgut binding persists in late-stage parasites. This observation is paradigm-changing and suggests that only a subset of infective metacyclics lose their ability to attach to the midgut with implications for parasite transmission dynamics. However, our data also demonstrate that LPG is not a determining factor in Leishmania infantum retention in the midgut of Lutzomyia longipalpis, a permissive vector. Rather, LPG appears to be more important in protecting some parasite strains from the toxic environment generated during blood meal digestion in the insect gut. Thus, the relevance of LPG in parasite development in permissive vectors appears to be complex and should be investigated on a strain-specific basis.


2021 ◽  
Vol 2 ◽  
Author(s):  
Barbora Vojtkova ◽  
Daniel Frynta ◽  
Tatiana Spitzova ◽  
Tereza Lestinova ◽  
Jan Votypka ◽  
...  

Sand fly saliva has considerable immunomodulatory effects on Leishmania infections in mammalian hosts. Studies on several Leishmania – sand fly - host combinations have demonstrated that co-inoculation with Leishmania parasites enhances pathogenicity, while pre-exposure of hosts to sand fly bites provides significant protection against infection. However, the third scenario, the effect of sand fly saliva on parasite development in hosts infected before exposure to sand flies, remains an understudied aspect of Leishmania–host–vector interaction. Here we studied the effect of exposure of L. major-infected BALB/c mice to repeated sand fly bites. Mice infected intradermally with sand fly-derived Leishmania were repeatedly bitten by Phlebotomus duboscqi females every two weeks. The lesion development was recorded weekly for ten weeks post-infection and parasite load and distribution in various organs were tested post mortem using qPCR. Repeated sand fly bites significantly enhanced the development of cutaneous lesions; they developed faster and reached larger size than in unexposed mice. Multiple sand fly bites also increased parasites load in inoculated ears. On the other hand, the distribution of parasites in mice body and their infectiousness to vectors did not differ significantly between groups. Our study provides the first evidence that multiple and repeated exposures of infected BALB/c mice to sand fly bites significantly enhance the progress of local skin infection caused by Leishmania major and increase tissue parasite load, but do not affect the visceralization of parasites. This finding appeals to adequate protection of infected humans from sand fly bites, not only to prevent transmission but also to prevent enlarged lesions.


Parasitology ◽  
2013 ◽  
Vol 140 (8) ◽  
pp. 1026-1032 ◽  
Author(s):  
LUCIE JECNA ◽  
ANNA DOSTALOVA ◽  
RAY WILSON ◽  
VERONIKA SEBLOVA ◽  
KWANG-POO CHANG ◽  
...  

SUMMARYBinding of promastigotes to the sand fly midgut epithelium is regarded as an essential part of the Leishmania life cycle in the vector. Among Leishmania surface molecules putatively involved in attachment to the sand fly midgut, two GPI-anchored molecules are the most prominent: lipophosphoglycan (LPG) and promastigote surface protease gp63. In this work, we examined midgut attachment of Leishmania lines mutated in GPI-anchored molecules and compared results from 2 different techniques: in vivo development in sand flies and in vitro competitive binding assays using fluorescently labelled parasites. In combination with previous studies, our data provide additional support for (1) an LPG-independent parasite-binding mechanism of Leishmania major within the midgut of the permissive vector Phlebotomus perniciosus, and provide strong support for (2) the crucial role of L. major LPG in specific vector Phlebotomus papatasi, and (3) a role for Leishmania amazonensis gp63 in Lutzomyia longipalpis midgut binding. Moreover, our results suggest a critical role for GPI-anchored proteins and gp63 in Leishmania mexicana attachment to L. longipalpis midguts, as the wild type (WT) line accounted for over 99% of bound parasites.


2008 ◽  
Vol 24 (12) ◽  
pp. 2948-2952 ◽  
Author(s):  
Elizabeth F. Rangel ◽  
Maurício L. Vilela

The article discusses habits related to the vectorial competence of Lutzomyia longipalpis, along with evidence confirming the importance of this sand fly species in the epidemiological chain of visceral leishmaniasis in Brazil. A new epidemiological profile for visceral leishmaniasis is also postulated, associated with domestic environments and the role of Lu. longipalpis in this process, its sylvatic origin, and its capacity to adapt to a wide range of habitats. Another sand fly species, Lu. cruzi, is mentioned as a vector of visceral leishmaniasis in some municipalities in Central Brazil, based on studies in endemic areas of the country.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Júlia Alves Menezes ◽  
Eduardo de Castro Ferreira ◽  
José Dilermando Andrade-Filho ◽  
Alessandra Mara de Sousa ◽  
Mayron Henrique Gomes Morais ◽  
...  

Some epidemiological aspects of leishmaniasis in the municipality of Formiga, Brazil, an important touristic site, were evaluated. Those included phlebotomine sand fly vectors, canine infection, and geoprocessing analysis for determining critical transmission areas. Sand flies (224 insects) belonging to ten different species were captured. The most captured species includedLutzomyia longipalpis(35.3%),Lutzomyia cortelezzii(33.5%), andLutzomyia whitmani(18.3%). A significant correlation between sand fly densities and climatic conditions was detected. Serological diagnosis (DPP and ELISA) was performed in 570 dogs indicating a prevalence of 5.8%. After sequencing the main species circulating in the area wereLeishmania infantumandLeishmania braziliensis. Spatial analysis demonstrated that vegetation and hydrography may be related to sand fly distribution and infected dogs. The municipality of Formiga has proven leishmaniasis vectors and infected dogs indicating the circulation of the parasite in the city. Correlation of those data with environmental and human cases has identified the critical areas for control interventions (south, northeast, and northwest). In conclusion, there is current transmission of visceral and canine human cases and the city is on the risk for the appearance of cutaneous cases.


Sign in / Sign up

Export Citation Format

Share Document