scholarly journals Adherent-Invasive and Non-Invasive Escherichia coli Isolates Differ in Their Effects on Caenorhabditis elegans’ Lifespan

2021 ◽  
Vol 9 (9) ◽  
pp. 1823
Author(s):  
Maria Beatriz de Sousa de Sousa Figueiredo ◽  
Elizabeth Pradel ◽  
Fanny George ◽  
Séverine Mahieux ◽  
Isabelle Houcke ◽  
...  

The adherent-invasive Escherichia coli (AIEC) pathotype has been implicated in the pathogenesis of inflammatory bowel diseases in general and in Crohn’s disease (CD) in particular. AIEC strains are primarily characterized by their ability to adhere to and invade intestinal epithelial cells. However, the genetic and phenotypic features of AIEC isolates vary greatly as a function of the strain’s clonality, host factors, and the gut microenvironment. It is thus essential to identify the determinants of AIEC pathogenicity and understand their role in intestinal epithelial barrier dysfunction and inflammation. We reasoned that soil nematode Caenorhabditis elegans (a simple but powerful model of host-bacterium interactions) could be used to study the virulence of AIEC vs. non- AIEC E. coli strains. Indeed, we found that the colonization of C. elegans (strain N2) by E. coli impacted survival in a strain-specific manner. Moreover, the AIEC strains’ ability to invade cells in vitro was linked to the median lifespan in C. elegans (strain PX627). However, neither the E. coli intrinsic invasiveness (i.e., the fact for an individual strain to be characterized as invasive or not) nor AIEC’s virulence levels (i.e., the intensity of invasion, established in % from the infectious inoculum) in intestinal epithelial cells was correlated with C. elegans’ lifespan in the killing assay. Nevertheless, AIEC longevity of C. elegans might be a relevant model for screening anti-adhesion drugs and anti-invasive probiotics.

2010 ◽  
Vol 78 (9) ◽  
pp. 4068-4076 ◽  
Author(s):  
Jennifer Hwang ◽  
Lisa M. Mattei ◽  
Laura G. VanArendonk ◽  
Philip M. Meneely ◽  
Iruka N. Okeke

ABSTRACT Enteroaggregative Escherichia coli (EAEC) strains are important diarrheal pathogens. EAEC strains are defined by their characteristic stacked-brick pattern of adherence to epithelial cells but show heterogeneous virulence and have different combinations of adhesin and toxin genes. Pathoadaptive deletions in the lysine decarboxylase (cad) genes have been noted among hypervirulent E. coli subtypes of Shigella and enterohemorrhagic E. coli. To test the hypothesis that cad deletions might account for heterogeneity in EAEC virulence, we developed a Caenorhabditis elegans pathogenesis model. Well-characterized EAEC strains were shown to colonize and kill C. elegans, and differences in virulence could be measured quantitatively. Of 49 EAEC strains screened for lysine decarboxylase activity, 3 tested negative. Most notable is isolate 101-1, which was recovered in Japan, from the largest documented EAEC outbreak. EAEC strain 101-1 was unable to decarboxylate lysine in vitro due to deletions in cadA and cadC, which, respectively, encode lysine decarboxylase and a transcriptional activator of the cadAB genes. Strain 101-1 was significantly more lethal to C. elegans than control strain OP50. Lethality was attenuated when the lysine decarboxylase defect was complemented from a multicopy plasmid and in single copy. In addition, restoring lysine decarboxylase function produced derivatives of 101-1 deficient in aggregative adherence to cultured human epithelial cells. Lysine decarboxylase inactivation is pathoadapative in an important EAEC outbreak strain, and deletion of cad genes could produce hypervirulent EAEC lineages in the future. These results suggest that loss, as well as gain, of genetic material can account for heterogeneous virulence among EAEC strains.


2019 ◽  
Vol 29 (1-6) ◽  
pp. 91-100
Author(s):  
Dorna Khoobbakht ◽  
Shohreh Zare Karizi ◽  
Mohammad Javad  Motamedi ◽  
Rouhollah Kazemi ◽  
Pooneh Roghanian ◽  
...  

Enterotoxigenic <i>Escherichia coli</i> (ETEC) is the most common agent of diarrhea morbidity in developing countries. ETEC adheres to host intestinal epithelial cells via various colonization factors. The CooD and CotD proteins play a significant role in bacteria binding to the intestinal epithelial cells as adhesin tip subunits of CS1 and CS2 pili. The purpose here was to design a new construction containing <i>cooD</i> and <i>cotD</i> genes and use several types of bioinformatics software to predict the structural and immunological properties of the designed antigen. The fusion gene was synthesized with codon bias of <i>E. coli</i> in order to increase the expression level of the protein. The amino acid sequences, protein structure, and immunogenicity properties of potential antigens were analyzed in silico. The chimeric protein was expressed in <i>E. coli</i>BL21 (DE3). The antigenicity of the recombinant proteins was verified by Western blotting and ELISA. In order to assess the induced immunity, the immunized mice were challenged with wild-type ETEC by an intraperitoneal route. Immunological analyses showed the production of a high titer of IgG serum with no sign of serum-mucosal IgA antibody response. The result of the challenge assay showed that 30% of immunized mice survived. The results of this study showed that CooD-CotD recombinant protein can stimulate immunity against ETEC. The designed chimera could be a prototype for the subunit vaccine, which is worthy of further consideration.


Digestion ◽  
2014 ◽  
Vol 89 (2) ◽  
pp. 110-118 ◽  
Author(s):  
Helen M. Becker ◽  
Aretussa Apladas ◽  
Michael Scharl ◽  
Michael Fried ◽  
Gerhard Rogler

2009 ◽  
Vol 75 (18) ◽  
pp. 5927-5937 ◽  
Author(s):  
Brandon A. Carlson ◽  
Kendra K. Nightingale ◽  
Gary L. Mason ◽  
John R. Ruby ◽  
W. Travis Choat ◽  
...  

ABSTRACT A longitudinal study was conducted to investigate the nature of Escherichia coli O157:H7 colonization of feedlot cattle over the final 100 to 110 days of finishing. Rectal fecal grab samples were collected from an initial sample population of 788 steers every 20 to 22 days and microbiologically analyzed to detect E. coli O157:H7. The identities of presumptive colonies were confirmed using a multiplex PCR assay that screened for gene fragments unique to E. coli O157:H7 (rfbE and fliC h7) and other key virulence genes (eae, stx 1, and stx 2). Animals were classified as having persistent shedding (PS), transient shedding (TS), or nonshedding (NS) status if they consecutively shed the same E. coli O157:H7 genotype (based on the multiplex PCR profile), exhibited variable E. coli O157 shedding, or never shed morphologically typical E. coli O157, respectively. Overall, 1.0% and 1.4% of steers were classified as PS and NS animals, respectively. Characterization of 132 E. coli O157:H7 isolates from PS and TS animals by pulsed-field gel electrophoresis (PFGE) typing yielded 32 unique PFGE types. One predominant PFGE type accounted for 53% of all isolates characterized and persisted in cattle throughout the study. Isolates belonging to this predominant and persistent PFGE type demonstrated an enhanced (P < 0.0001) ability to adhere to Caco-2 human intestinal epithelial cells compared to isolates belonging to less common PFGE types but exhibited equal virulence expression. Interestingly, the attachment efficacy decreased as the genetic divergence from the predominant and persistent subtype increased. Our data support the hypothesis that certain E. coli O157:H7 strains persist in feedlot cattle, which may be partially explained by an enhanced ability to colonize the intestinal epithelium.


2001 ◽  
Vol 69 (9) ◽  
pp. 5679-5688 ◽  
Author(s):  
Ivana Simonovic ◽  
Monique Arpin ◽  
Athanasia Koutsouris ◽  
Holly J. Falk-Krzesinski ◽  
Gail Hecht

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is an important human intestinal pathogen, especially in infants. EPEC adherence to intestinal epithelial cells induces the accumulation of a number of cytoskeletal proteins beneath the bacteria, including the membrane-cytoskeleton linker ezrin. Evidence suggests that ezrin can participate in signal transduction. The aim of this study was to determine whether ezrin is activated following EPEC infection and if it is involved in the cross talk with host intestinal epithelial cells. We show here that following EPEC attachment to intestinal epithelial cells there was significant phosphorylation of ezrin, first on threonine and later on tyrosine residues. A significant increase in cytoskeleton-associated ezrin occurred following phosphorylation, suggesting activation of this molecule. Nonpathogenic E. coli and EPEC strains harboring mutations in type III secretion failed to elicit this response. Expression of dominant-negative ezrin significantly decreased the EPEC-elicited association of ezrin with the cytoskeleton and attenuated the disruption of intestinal epithelial tight junctions. These results suggest that ezrin is involved in transducing EPEC-initiated signals that ultimately affect host physiological functions.


2016 ◽  
Vol 19 (3) ◽  
pp. 619-625 ◽  
Author(s):  
C.H. Dai ◽  
L.N. Gan ◽  
W.U. Qin ◽  
C. Zi ◽  
G.Q. Zhu ◽  
...  

AbstractAn efficient and accurate method to testEscherichia coli(E. coli) adhesion to intestinal epithelial cells will contribute to the study of bacterial pathogenesis and the function of genes that encode receptors related to adhesion. This study used the quantitative real-time polymerase chain reaction (qPCR) method. qPCR primers were designed from thePILINgene ofE. coliF18ab, F18ac, and K88ac, and the pig β-ACTINgene. Total deoxyribonucleic acid (DNA) fromE. coliand intestinal epithelial cells (IPEC-J2 cells) were used as templates for qPCR. The 2−ΔΔCtformula was used to calculate the relative number of bacteria in cultures of different areas. We found that the relative numbers of F18ab, F18ac, and K88ac that adhered to IPEC-J2 cells did not differ significantly in 6-, 12-, and 24-well culture plates. This finding indicated that there was no relationship between the relative adhesion number ofE. coliand the area of cells, so the method of qPCR could accurately test the relative number ofE. coli. This study provided a convenient and reliable testing method for experiments involvingE. coliadhesion, and also provided innovative ideas for similar detection methods.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mengjiao Guo ◽  
Congyue Zhang ◽  
Chengcheng Zhang ◽  
Xiaorong Zhang ◽  
Yantao Wu

Lacticaseibacillus rhamnosus is a recognized probiotic that is widely used in scientific research and clinical applications. This study found that the Lacticaseibacillus rhamnosus GG (LGG) strain can reduce the adhesion of Escherichia coli (E. coli) to primary chicken intestinal epithelial cells by 75.7% and inhibit 41.7% of the E. coli that adhere to intestinal epithelial cells. Additionally, LGG showed strong inhibitory ability on the growth of E. coli, Staphylococcus aureus, Salmonella Paratyphi B, and Salmonella Enteritidis in vitro. Furthermore, the influence of LGG on the growth performance, intestinal flora, immunity, and disease resistance of chickens was explored. Chickens fed with LGG exhibited increased average daily weight gain and concentrations of sIgA, IgG, and IgM than did controls. After 21 days of feeding, a diet with LGG increased the diversity of intestinal microbiota and maintained intestinal health. Moreover, LGG promoted immunologic barriers by upregulating cytokines and chemokines via the Toll-like receptor. The major pro-inflammatory factors, including Myd88, NF-κB, Il6, and Il8, were upregulated compared to controls. After being challenged with E. coli, the survival rate of chickens fed with LGG was significantly higher than those in the control group, and decreased numbers of E. coli were detected in the heart and lungs of the LGG group. In summary, oral administration of LGG to chickens could improve growth performance, maintain intestinal homeostasis, and enhance innate immune response and disease resistance.


2019 ◽  
Vol 85 (12) ◽  
Author(s):  
Junyuan Zheng ◽  
Lihong Lou ◽  
Junjie Fan ◽  
Chunlan Huang ◽  
Qixiang Mei ◽  
...  

ABSTRACT An increase of Escherichia-Shigella was previously reported in acute necrotizing pancreatitis (ANP). We investigated whether Escherichia coli MG1655, an Escherichia commensal organism, increased intestinal injury and aggravated ANP in rats. ANP was induced by retrograde injection of 3.5% sodium taurocholate into the biliopancreatic duct. Using gut microbiota-depleted rats, we demonstrated that gut microbiota was involved in the pancreatic injury and intestinal barrier dysfunction in ANP. Using 16S rRNA gene sequencing and quantitative PCR, we found intestinal dysbiosis and a significant increase of E. coli MG1655 in ANP. Afterward, administration of E. coli MG1655 by gavage to gut microbiota-depleted rats with ANP was performed. We observed that after ANP induction, E. coli MG1655-monocolonized rats presented more severe injury in the pancreas and intestinal barrier function than gut microbiota-depleted rats. Furthermore, Toll-like receptor 4 (TLR4)/MyD88/p38 mitogen-activated protein (MAPK) and endoplasmic reticulum stress (ERS) activation in intestinal epithelial cells were also increased more significantly in the MG1655-monocolonized ANP rats. In vitro, the rat ileal epithelial cell line IEC-18 displayed aggravated tumor necrosis factor alpha-induced inflammation and loss of tight-junction proteins in coculture with E. coli MG1655, as well as TLR4, MyD88, and Bip upregulation. In conclusion, our study shows that commensal E. coli MG1655 increases TLR4/MyD88/p38 MAPK and ERS signaling-induced intestinal epithelial injury and aggravates ANP in rats. Our study also describes the harmful potential of commensal E. coli in ANP. IMPORTANCE This study describes the harmful potential of commensal E. coli in ANP, which has not been demonstrated in previous studies. Our work provides new insights into gut bacterium-ANP cross talk, suggesting that nonpathogenic commensals could also exhibit adverse effects in the context of diseases.


2006 ◽  
Vol 84 (3) ◽  
pp. 351-357 ◽  
Author(s):  
Francesca Berlutti ◽  
Serena Schippa ◽  
Clara Morea ◽  
Serena Sarli ◽  
Brunella Perfetto ◽  
...  

Intestinal epithelial cells are able to differentially interact with commensal or pathogenic microorganisms, triggering a physiological or destructive inflammation, respectively. To mimic commensal–enteroinvasive bacteria–host cell interaction, we infected Caco-2 cells with noninvasive Escherichia coli HB101 and with recombinant invasive E. coli HB101(pRI203). Using DNA microarray mRNA profiling and ELISA assays, we studied the expression of several cytokine and cytokine-related genes in infected Caco-2 cells in the absence or presence of bovine lactoferrin (bLf). Infection of Caco-2 cells with the noninvasive strain induced a slight increase in the expression of interleukin 8 (IL-8), whereas infection with invasive E. coli HB101(pRI203) induced a significant increase in the expression of IL-8 as well as other pro-inflammatory cytokines. The addition of bLf, in native- or holo-form, did not influence expression of cytokine genes by uninfected Caco-2 cells, but it decreased expression of IL-8 by cells infected with E.coli HB101. Moreover, except for IL-8, bLfs dramatically downregulated pro-inflammatory cytokines upexpressed by Caco-2 cells infected with the invasive strain. Although IL-8 was decreased by bLfs, it remained upregulated, suggesting that it could be a signal of persistence of intracellular bacteria. The bLf ability to reduce expression of some pro-inflammatory cytokines, which appears independent of its iron saturation, might represent an important natural mechanism in regulating epithelial cell responses to pathogenic bacteria and in limiting cell damage and the spread of infections.


Sign in / Sign up

Export Citation Format

Share Document