scholarly journals Whole-Genome Sequencing-Based Characterization of a Listeria monocytogenes Strain from an Aborted Water Buffalo in Southern Italy

2021 ◽  
Vol 9 (9) ◽  
pp. 1875
Author(s):  
Rubina Paradiso ◽  
Marita Georgia Riccardi ◽  
Bianca Cecere ◽  
Nunzia Riccone ◽  
Roberto Scialla ◽  
...  

Listeria monocytogenes is a Gram-positive pathogen causing life-threatening infections both in humans and animals. In livestock farms, it can persist for a long time and primarily causes uterine infections and encephalitis in farmed animals. Whole genome sequencing (WGS) is currently becoming the best method for molecular typing of this pathogen due to its high discriminatory power and efficiency of characterization. This study describes the WGS-based characterization of an L. monocytogenes strain from an aborted water buffalo fetus in southern Italy. The strain under study was classified as molecular serogroup IVb, phylogenetic lineage I, MLST sequence type 6, Clonal Complex 6, and cgMLST type CT3331, sublineage 6. Molecular analysis indicated the presence of 61 virulence genes and 4 antibiotic resistance genes. Phylogenetic analysis, including all the publicly available European L. monocytogenes serogroup IVb isolates, indicated that our strain clusterized with all the other CC6 strains and that different CCs were variably distributed within countries and isolation sources. This study contributes to the current understanding of the genetic diversity of L. monocytogenes from animal sources and highlights how the WGS strategy can provide insights into the pathogenic potential of this microorganism, acting as an important tool for epidemiological studies.

2020 ◽  
Vol 21 (24) ◽  
pp. 9419
Author(s):  
Kinga Wieczorek ◽  
Arkadiusz Bomba ◽  
Jacek Osek

Listeria monocytogenes, an important foodborne pathogen, may be present in different kinds of food and in food processing environments where it can persist for a long time. In this study, 28 L. monocytogenes isolates from fish and fish manufactures were characterized by whole genome sequencing (WGS). Core genome multilocus sequence typing (cgMLST) analysis was applied to compare the present isolates with publicly available genomes of L. monocytogenes strains recovered worldwide from food and from humans with listeriosis. All but one (96.4%) of the examined isolates belonged to molecular serogroup IIa, and one isolate (3.6%) was classified to serogroup IVb. The isolates of group IIa were mainly of MLST sequence types ST121 (13 strains) and ST8 (four strains) whereas the isolate of serogroup IVb was classified to ST1. Strains of serogroup IIa were further subtyped into eight different sublineages with the most numerous being SL121 (13; 48.1% strains) which belonged to six cgMLST types. The majority of strains, irrespective of the genotypic subtype, had the same antimicrobial resistance profile. The cluster analysis identified several molecular clones typical for L. monocytogenes isolated from similar sources in other countries; however, novel molecular cgMLST types not present in the Listeria database were also identified.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Mihkel Mäesaar ◽  
Rafael Mamede ◽  
Terje Elias ◽  
Mati Roasto

Listeria monocytogenes sequence type 1247 clonal complex 8 caused a prolonged multicountry outbreak in five EU countries: Denmark, Estonia, Finland, France, and Sweden. A total of 22 disease cases were identified with onset of symptoms between July 2014 and February 2019. Five patients died due to, or with, the disease. The retrospective analysis of L. monocytogenes isolate VLTRLM2013 revealed the presence of an outbreak-related strain (cgMLST type L2-SL8-ST1247-CT4158) in ready-to-eat fish product more than a year prior to the first outbreak-related cases. Reference outbreak strain and VLTRLM2013 strain were compared using core genome and whole-genome multilocus sequence typing analyses. Genomic level differences of the persistent L. monocytogenes strains associated with a prolonged multicountry foodborne listeriosis outbreak are described. It was concluded that the persistent nature of the multicountry outbreak-related L. monocytogenes strain VLTRLM2013 together with stress island, virulence, and antibiotic resistance genes could potentially be the determining factors for the extensive and prolonged outbreak affecting five European Union countries. Our results support the systematic application of whole-genome sequencing in food and public health surveillance and further encourages its wide adoption.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Weili Cai ◽  
Schyler Nunziata ◽  
John Rascoe ◽  
Michael J. Stulberg

AbstractHuanglongbing (HLB) is a worldwide deadly citrus disease caused by the phloem-limited bacteria ‘Candidatus Liberibacter asiaticus’ (CLas) vectored by Asian citrus psyllids. In order to effectively manage this disease, it is crucial to understand the relationship among the bacterial isolates from different geographical locations. Whole genome sequencing approaches will provide more precise molecular characterization of the diversity among populations. Due to the lack of in vitro culture, obtaining the whole genome sequence of CLas is still a challenge, especially for medium to low titer samples. Hundreds of millions of sequencing reads are needed to get good coverage of CLas from an HLB positive citrus sample. In order to overcome this limitation, we present here a new method, Agilent SureSelect XT HS target enrichment, which can specifically enrich CLas from a metagenomic sample while greatly reducing cost and increasing whole genome coverage of the pathogen. In this study, the CLas genome was successfully sequenced with 99.3% genome coverage and over 72X sequencing coverage from low titer tissue samples (equivalent to 28.52 Cq using Li 16 S qPCR). More importantly, this method also effectively captures regions of diversity in the CLas genome, which provides precise molecular characterization of different strains.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Pelerito ◽  
Alexandra Nunes ◽  
Teresa Grilo ◽  
Joana Isidro ◽  
Catarina Silva ◽  
...  

Brucellosis is an important zoonosis that is emerging in some regions of the world, gaining increased relevance with the inclusion of the causing agent Brucella spp. in the class B bioterrorism group. Until now, multi-locus VNTR Analysis (MLVA) based on 16 loci has been considered as the gold standard for Brucella typing. However, this methodology is laborious, and, with the rampant release of Brucella genomes, the transition from the traditional MLVA to whole genome sequencing (WGS)-based typing is on course. Nevertheless, in order to avoid a disruptive transition with the loss of massive genetic data obtained throughout the last decade and considering that the transition timings will vary considerably among different countries, it is important to determine WGS-based MLVA alleles of the nowadays sequenced genomes. On this regard, we aimed to evaluate the performance of a Python script that had been previously developed for the rapid in silico extraction of the MLVA alleles, by comparing it to the PCR-based MLVA procedure over 83 strains from different Brucella species. The WGS-based MLVA approach detected 95.3% of all possible 1,328 hits (83 strains×16 loci) and showed an agreement rate with the PCR-based MLVA procedure of 96.4% for MLVA-16. According to our dataset, we suggest the use of a minimal depth of coverage of ~50x and a maximum number of ~200 contigs as guiding “boundaries” for the future application of the script. In conclusion, the evaluated script seems to be a very useful and robust tool for the in silico determination of MLVA profiles of Brucella strains, allowing retrospective and prospective molecular epidemiological studies, which are important for maintaining an active epidemiological surveillance of brucellosis.


2015 ◽  
Vol 81 (17) ◽  
pp. 6024-6037 ◽  
Author(s):  
Matthew J. Stasiewicz ◽  
Haley F. Oliver ◽  
Martin Wiedmann ◽  
Henk C. den Bakker

ABSTRACTWhile the food-borne pathogenListeria monocytogenescan persist in food associated environments, there are no whole-genome sequence (WGS) based methods to differentiate persistent from sporadic strains. Whole-genome sequencing of 188 isolates from a longitudinal study ofL. monocytogenesin retail delis was used to (i) apply single-nucleotide polymorphism (SNP)-based phylogenetics for subtyping ofL. monocytogenes, (ii) use SNP counts to differentiate persistent from repeatedly reintroduced strains, and (iii) identify genetic determinants ofL. monocytogenespersistence. WGS analysis revealed three prophage regions that explained differences between three pairs of phylogenetically similar populations with pulsed-field gel electrophoresis types that differed by ≤3 bands. WGS-SNP-based phylogenetics found that putatively persistentL. monocytogenesrepresent SNP patterns (i) unique to a single retail deli, supporting persistence within the deli (11 clades), (ii) unique to a single state, supporting clonal spread within a state (7 clades), or (iii) spanning multiple states (5 clades). Isolates that formed one of 11 deli-specific clades differed by a median of 10 SNPs or fewer. Isolates from 12 putative persistence events had significantly fewer SNPs (median, 2 to 22 SNPs) than between isolates of the same subtype from other delis (median up to 77 SNPs), supporting persistence of the strain. In 13 events, nearly indistinguishable isolates (0 to 1 SNP) were found across multiple delis. No individual genes were enriched among persistent isolates compared to sporadic isolates. Our data show that WGS analysis improves food-borne pathogen subtyping and identification of persistent bacterial pathogens in food associated environments.


Genome ◽  
2020 ◽  
Vol 63 (8) ◽  
pp. 397-405
Author(s):  
Xiaowen Yang ◽  
Ning Wang ◽  
Xiaofang Cao ◽  
Pengfei Bie ◽  
Zhifeng Xing ◽  
...  

Brucella spp., facultative intracellular pathogens that can persistently colonize animal host cells and cause zoonosis, affect public health and safety. A Brucella strain was isolated from yak in Qinghai Province. To detect whether this isolate could cause an outbreak of brucellosis and to reveal its genetic characteristics, several typing and whole-genome sequencing methods were applied to identify its species and genetic characteristics. Phylogenetic analysis based on MLVA and whole-genome sequencing revealed the genetic characteristics of the isolated strain. The results showed that the isolated strain is a B. suis biovar 1 smooth strain, and this isolate was named B. suis QH05. The results of comparative genomics and MLVA showed that B. suis QH05 is not a vaccine strain. Comparison with other B. suis strains isolated from humans and animals indicated that B. suis QH05 may be linked to specific animal and human sources. In conclusion, B. suis QH05 does not belong to the Brucella epidemic species in China, and as the first isolation of B. suis from yak, this strain expands the host range of B. suis.


2020 ◽  
Vol 17 (2) ◽  
pp. 126-136 ◽  
Author(s):  
Valentina Trinetta ◽  
Gabriela Magossi ◽  
Marc W. Allard ◽  
Sandra M. Tallent ◽  
Eric W. Brown ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document