scholarly journals Phytopythium vexans Associated with Apple and Pear Decline in the Saïss Plain of Morocco

2021 ◽  
Vol 9 (9) ◽  
pp. 1916
Author(s):  
Salma Jabiri ◽  
Chaimaa Bahra ◽  
Dustin MacLean ◽  
Nabil Radouane ◽  
Essaid Ait Barka ◽  
...  

An extensive survey conducted in the Saïss plain of Morocco during the 2017–2018 growing season revealed that 35 out of 50 apple and pear orchards were infested with a pathogen that causes the decline disease. Morphological and phylogenetic tree analyses using the cox II gene allowed us to identify the pathogen as Phytopythium vexans. Interestingly, no Phytophthora and Pythium species were isolated. The occurrence and prevalence of the disease varied between locations; the most infested locations were Meknes (100%), Imouzzer (83%), and Sefrou (80%). To fulfill Koch’s postulate, a greenhouse pathogenicity test was performed on the stem and collar of one-year-old healthy seedlings of apple rootstock M115. Symptoms similar to those observed in the field were reproduced in less than 4 months post-inoculation with root rot disease severity ranging from 70 to 100%. The survey results evidenced that apple rootstocks, soil type, and irrigation procedure may contribute significantly to the occurrence of the disease. The disease was most prevalent in drip water irrigation and sandy-clay soil on wild apple rootstock. Accordingly, a rational drip advanced watering system and good sanitation practices could eliminate water stagnation and help prevent the onset of this disease. It was concluded that Pp. vexans occurrence may be strongly influenced by irrigation mode and type of soil. Therefore, the obtained findings of this study could help to better understand the recurrence of this disease and to develop a reliable integrated strategy for its management.

Author(s):  
Bishnu Maya Bashyal ◽  
Bhupendra Singh Kharayat ◽  
Pooja Parmar ◽  
Ashish Kumar Gupta ◽  
S. C. Dubey ◽  
...  

Background: Mungbean (Vigna radiata L. Wilzeck) is one of the most important pulse crops and grown in almost all parts of the India. Web blight/wet root rot disease of mungbean is caused by Rhizoctonia solani Kühn. Crop environmental factors plays a vital role in the development of web blight disease caused by R. solani. An understanding of the role of environmental factors on the infection and survival of the pathogen is necessary to develop disease management practices. Methods: The effect of different temperatures (4oC, 20oC, 25oC, 30oC and 35oC) on mycelial growth of seven different R. solani isolates belonging to different anastomosis group were evaluated under in vitro conditions. Effect of different temperatures on the development of root rot/web blight disease of mungbean was also evaluated under phytotron conditions at various temperatures with constant relative humidity (85%) and illumination (alternate dark and light period of 12 h). Effect of temperatures on the expression of selected pathogenicity related genes was evaluated through real time PCR. Result: Maximum radial growth in R. solani isolates was observed at 25 and 30oC after 48 hrs of incubation. Maximum disease incidence was observed with R. solani isolate RUPU-18 (73.11%) followed by R-17 (68.75%), RDLM-1 (63.45%) at 25oC on mungbean genotype Pusa Vishal. Expression of genes like ABC transporter was observed only at 35oC, while other genes like 1, 3 glucan hydrolase expressed maximum at 25oC after 24, 48 and 72 hrs post inoculation. Present study suggested that the expression of pathogenicity related genes in mungbean-R. solani system is dependent on the temperature and time interval post pathogen inoculation.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2123
Author(s):  
Wen Ze Go ◽  
Kit Ling Chin ◽  
Paik San H’ng ◽  
Mui Yun Wong ◽  
Chuah Abdullah Luqman ◽  
...  

Latex production from Hevea brasiliensis rubber tree is the second most important commodity in Malaysia, but this industry is threatened by the white root rot disease (WRD) caused by Rigidoporus microporus that leads to considerable latex yield loss and tree death. This study aimed to characterize and compare the virulence of five R. microporus isolates obtained from infected rubber trees located at different states in Malaysia. These isolates were subjected to morphological and molecular characterization for species confirmation and pathogenicity test for the determination of virulence level. BLAST search showed that the ITS sequences of all the pathogen isolates were 99% identical to R. microporus isolate SEG (accession number: MG199553) from Malaysia. The pathogenicity test of R. microporus isolates conducted in a nursery with 24 seedlings per isolate showed that isolate RL21 from Sarawak has developed the most severe above- and below-ground symptoms of WRD on the rubber clone RRIM600 as host. Six months after being infected with R. microporus, RL21 was evaluated with the highest average of disease severity index of 80.52% for above- and below-ground symptoms, followed by RL22 (68.65%), RL20 (66.04%), RL26 (54.38%), and RL25 (43.13%). The in vitro growth condition tests showed that isolate RL21 of R. microporus has optimum growth at 25–30 °C, with the preference of weakly acidic to neutral environments (pH 6–7). This study revealed that different virulence levels are possessed among different R. microporus isolates even though they were isolated from the same host species under the same climate region. Taken together, field evaluation through visual observation and laboratory assays have led to screening of the most virulent isolate. Determination of the most virulent isolate in the present study is vital and shall be taken into consideration for the selection of suitable pathogen isolate in the development of more effective control measures in combating tenacious R. microporus.


Plant Disease ◽  
2020 ◽  
Author(s):  
Martin Cipollini ◽  
John Patten Moss ◽  
William Walker ◽  
Natalie Bailey ◽  
Cooper Foster ◽  
...  

We tested an alternative small stem assay (SSA) for blight resistance in chestnuts (Castanea spp.). Whereas standard SSAs are done by inoculating small incisions in stems, we cut off stems (4 to 5 mm diameter), inoculated the cut ends with disks of Cryphonectria parasitica inoculum, and covered them with plastic sleeves. This method was designed to be relatively simple to implement, to consistently induce cankering, and to better enable seedlings to recover by developing shoots from the lower stem (standard SSAs delay removal of blighted stems until late in the growing season, if at all). We conducted six experiments with seedlings and orchard trees of Castanea dentata (susceptible), C. mollissima (resistant), and hybrids expected to vary in resistance. Experiments with seedlings and two of the three orchard experiments showed clear differentiation between susceptible and resistant types, especially after 90 days post-inoculation and when the orange-colored zone of the canker was measured. One orchard experiment failed to give clear results, but was ended earlier (60 days) than the other experiments. We observed only two failed inoculations out of over 200 performed. Comparisons with other studies suggest that this SSA method performs at least as well as the standard SSA method in distinguishing resistant and susceptible types, at least in seedlings. Survivorship after one year for seedlings inoculated in 2018 ranged from 70% for C. dentata to 100% for C. mollissima, and in 2019 ranged from 40% in F1s to 100% for C. mollissima. Deaths of seedlings following SSAs were mostly unrelated to the inoculations (e.g., root rot).


2016 ◽  
Vol 56 (4) ◽  
pp. 380-388 ◽  
Author(s):  
Porntip Sangsil ◽  
Charassri Nualsri ◽  
Natthakorn Woraathasin ◽  
Korakot Nakkanong

AbstractPhenylalanine ammonia lyase (PAL) is a specific branch point enzyme of primary and secondary metabolism. It plays a key role in plant development and defense mechanisms. Phenylalanine ammonia lyase from Hevea brasiliensis (HbPAL) presented a complete open reading frame (ORF) of 2,145 bp with 721 encoded amino acids. The sequence alignment indicated that the amino acid sequence of HbPAL shared a high identity with PAL genes found in other plants. Phylogenetic tree analysis indicated that HbPAL was more closely related to PALs in Manihot esculenta and Jatropha curcas than to those from other plants. Transcription pattern analysis indicated that HbPAL was constitutively expressed in all tissues examined, most highly in young leaves. The HbPAL gene was evaluated by quantitative real-time PCR (qRT-PCR) after infection with Rigidoporus microporus at 0, 12, 24, 48, 72 and 96 hours post inoculation. The expression patterns of the PAL gene differed among the three rubber clones used in the study. The transcription level of the white root rot disease tolerant clone, PB5/51 increased sharply during the latter stages of infection, while it was relatively subdued in the white root rot disease susceptible clones, RRIM600 and BPM24. These results suggest that the HbPAL gene may play a role in the molecular defense response of H. brasiliensis to pathogen attack and could be used as a selection criterion for disease tolerance.


Plant Disease ◽  
2021 ◽  
Author(s):  
Romana Anjum ◽  
Iqrar Ahmad Khan ◽  
Mark L. Gleason ◽  
Noumal Hassani

Psidium guajava is a widely grown fruit tree of Asia for food and medicinal purposes. Also being reported to have anti-inflammatory, antimicrobial, antioxidant, antidiarrheal, antimutagenic properties (Somu, 2012). In April 2018, quick decline disease of guava was observed in orchards of Sheikhupura, Lahore, Faisalabad, Kasur and Chiniot districts of Punjab, Pakistan. Approximately 68% of the trees were found declined with mummified fruits. Initial infection symptoms appeared as wilting of leaves, bark discoloration, followed by the leaf drooping, crown area discoloration, bark splitting, mummified fruits, dying of branches and lately whole tree death in weeks to months. The fungus formed a dark brown to black discoloration (3 to 5 cm wide and 7 to 9 cm long) in vascular bundles of P. guajava tree. Sixty-five samples of discolored wood from the main stem were collected, and pathogen was isolated using carrot bait method (Moller and DeVay, 1968). Isolation and purification were done on 2% Malt extract agar (MEA) plates incubated at 25 ± 2 °C in 12 h light and dark period. After 6 days of incubation, fungal hyphae, fruiting structures, sexual & asexual spores were observed on MEA plates. Black globose to subglobose ascomata with bases (151-) 200 (-278) µm in diameter with long neck (511-) 535 to 600 (-671) µm long, (23-) 28 to 39 (-47) µm wide at base, (13-) 13- 19 (-25) µm wide at tip and light brown to hyaline divergent ostiolar hyphae (50µm) were developed and produces hat-shaped hyaline ascospores 3 to 5 µm long and 6-7 µm (with sheath) and 4 µm (without sheath) wide. After 7 days, initially white mycelium turned into olivaceous green and produced primary phialidic conidiophore with emerging primary cylindrical hyaline conidia (7 to 12 × 4 to 6 µm), secondary conidiophore with emerging chain of secondary barrel-shaped hyaline conidia (9-) 10 to 12 (-13) µm long × (5-) 5 to 9 (-11) µm wide and dark brown dematiaceous chlamydospores conidia (12 ×10 µm) were observed. All morphological characteristics were consistent to the description of Ceratocystis manginecans (Van Wyk, et al., 2007). For further confirmation, from a purified isolate GWD10, genomic DNA was extracted. The internal transcribed spacer (ITS) and translation elongation factor 1-alpha (TEF 1-α) region were amplified with primer pairs ITS1/ITS4 and EF1/EF2 (Jacobs et al., 2004; White et al., 1990) respectively. Generated sequences (Accession Nos. MN 365128 & MT952139) on BLAST analysis showed 100% homology for ITS and TEF with Ceratocystis manginecans (Accession No., KC261852 CMW 13582 Voucher, NR-119532.1 type material, MH863135; EF433317, respectively) reported from Oman and Pakistan (Van Wyk et al., 2007 & Vu et al., 2019). For pathogenicity test, one-year-old healthy P. guajava plants were inoculated by making a T-shaped slit of 5 × 7.5 mm in the bark. Two weeks old cultures of GWD10, 5-mm mycelial discs were aseptically transferred and covered with moistened sterilized cotton swab followed parafilm to maintain humidity. Fifteen plants were inoculated with fungal cultures and five plants were inoculated with MEA plugs as controls. All plants were maintained at 25 ± 2 °C with 80 ± 5% relative humidity (RH) in greenhouse Initial bark discoloration developed after 14 days of inoculation. After 40 days of inoculation plants started wilting and dying, similar to the symptoms were observed in naturally infected trees. Control plants remained asymptomatic. To fulfill Koch’s pustulates, the same pathogen was re-isolated from the test plants and identified on morphological features to GWD10. The pathogen has been associated with mango decline in Oman and Pakistan (Van Wyk et al., 2007), acacia wilt in Indonesia (Harrington et al., 2015) and siris wilt in Pakistan (Razzaq et al., 2020). P guajava is an important fruit and medicinal plant, and the infection of C. manginecans is a great concern to the producers of P. guajava (Harrington et al., 2015; Huang et al., 2003). To our knowledge, this is the first report of Ceratocystis manginecans causing quick decline of P. guajava worldwide.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hammad Abdelwanees Ketta ◽  
Omar Abd El-Raouf Hewedy

Abstract Background Root rot pathogens reported to cause considerable losses in both the quality and productivity of common bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.). It is an aggressive crop disease with detriment economic influence caused by Fusarium solani and Rhizoctonia solani among other soil-borne fungal pathogens. Destructive plant diseases such as root rot have been managed in the last decades using synthetic pesticides. Main body Seeking of economical and eco-friendly alternatives to combat aggressive soil-borne fungal pathogens that cause significant yield losses is urgently needed. Trichoderma emerged as promising antagonist that inhibits pathogens including those inducing root rot disease. Detailed studies for managing common bean and pea root rot disease using different Trichoderma species (T. harzianum, T. hamatum, T. viride, T. koningii, T. asperellum, T. atroviridae, T. lignorum, T. virens, T. longibrachiatum, T. cerinum, and T. album) were reported both in vitro and in vivo with promotion of plant growth and induction of systemic defense. The wide scale application of selected metabolites produced by Trichoderma spp. to induce host resistance and/or to promote crop yield, may represent a powerful tool for the implementation of integrated pest management strategies. Conclusions Biological management of common bean and pea root rot-inducing pathogens using various species of the Trichoderma fungus might have taken place during the recent years. Trichoderma species and their secondary metabolites are useful in the development of protection against root rot to bestow high-yielding common bean and pea crops.


Sign in / Sign up

Export Citation Format

Share Document