scholarly journals Geochemical Modelling of the Evolution of Caprock Sealing Capacity at the Shenhua CCS Demonstration Project

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1009
Author(s):  
Guodong Yang ◽  
Xin Ma ◽  
Tao Feng ◽  
Ying Yu ◽  
Shuguo Yin ◽  
...  

CO2 geological storage is considered as an important measure to reduce anthropogenic CO2 emissions to the atmosphere for addressing climate change. The key prerequisite for long-term CO2 geological storage is the sealing capacity of caprock. This study investigates the evolution of sealing capacity of caprock induced by geochemical reactions among CO2, water and caprock using TOUGHREACT code based on the Heshanggou Formation mudstone at the Shenhua Carbon Capture and Storage (CCS) demonstration site of China. The results show that the self-sealing phenomenon occurs in the lower part of the caprock dominated by the precipitation of dawsonite, magnesite, siderite, Ca-smectite and illite. While the self-dissolution occurs in the upper part of caprock mainly due to the dissolution of kaolinite, K-feldspar, chlorite and Ca-smectite. Sensitivity analyses indicate that the precipitation of dawsonite, magnesite, siderite is highly advantageous leading to self-sealing of caprock, with albite and chlorite dissolution providing Na+, Mg2+ and Fe2+. The dissolution of K-feldspar dominates illite precipitation by providing required K+, and albite affects Ca-smectite precipitation. The self-sealing and self-dissolution of caprock are enhanced significantly with increasing temperature, while the effect of salinity on caprock sealing capacity is negligible perhaps due to the low salinity level of formation water.

1969 ◽  
Vol 17 ◽  
pp. 13-16 ◽  
Author(s):  
Peter Frykman ◽  
Lars Henrik Nielsen ◽  
Thomas Vangkilde-Pedersen

Carbon capture and storage (CCS) is increasingly considered to be a tool that can significantly reduce the emission of CO2. It is viewed as a technology that can contribute to a substantial, global reduction of emitted CO2 within the timeframe that seems available for mitigating the effects of present and continued emission. In order to develop the CCS method the European Union (EU) has supported research programmes for more than a decade, which focus on capture techniques, transport and geological storage. The results of the numerous research projects on geological storage are summarised in a comprehensive best practice manual outlining guidelines for storage in saline aquifers (Chadwick et al. 2008). A detailed directive for geological storage is under implementation (European Commission 2009), and the EU has furthermore established a programme for supporting the development of more than ten large-scale demonstration plants throughout Europe. Geological investigations show that suitable storage sites are present in most European countries. In Denmark initial investigations conducted by the Geological Survey of Denmark and Greenland and private companies indicate that there is significant storage potential at several locations in the subsurface.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5074
Author(s):  
Radosław Kaplan ◽  
Michał Kopacz

This study documents the results of economic assessment concerning four variants of coal gasification to hydrogen in a shell reactor. That assessment has been made using discounting methods (NPV: net present value, IRR: internal rate of return), as well as indicators based on a free cash flow to firm (FCFF) approach. Additionally, sensitivity analysis has been carried out, along with scenario analysis in current market conditions concerning prices of hard coal, lignite, hydrogen and CO2 allowances, as well as capital expenditures and costs related to carbon capture and storage (CCS) systems. Based on NPV results, a negative economic assessment has been obtained for all the analyzed variants varying within the range of EUR −903 to −142 million, although the variants based on hard coal achieved a positive IRR (5.1–5.7%) but lower than the assumed discount rates. In Polish conditions, the gasification of lignite seems to be unprofitable, in the assumed scale of total investment outlays and the current price of coal feedstock. The sensitivity analyses indicate that at least a 20% increase of hydrogen price would be required, or a similar reduction of capital expenditures (CAPEX) and costs of operation, for the best variant to make NPV positive. Analyses have also indicated that on the economic basis, only the prices of CO2 allowances exceeding EUR 40/Mg (EUR 52/Mg for lignite) would generate savings due to the availability of CCS systems.


2021 ◽  
pp. petgeo2020-136
Author(s):  
Quentin Fisher ◽  
Frauke Schaefer ◽  
Ieva Kaminskaite ◽  
David N Dewhurst ◽  
Graham Yielding

Predicting the sealing capacity of faults and caprocks has been a long-standing uncertainty for those involved in the exploration, appraisal and development of petroleum reservoirs. In more recent years, interest in the topic has increased in a wide range of other applications, particularly those related to the decarbonization of our energy supply such as carbon capture and storage (CCS), radioactive waste disposal, geothermal energy production and underground energy storage (e.g. compressed air, hydrogen). Knowledge of how faults impact fluid flow is also important for management of drinking water supplies. To communicate new advances in research in these areas, the EAGE organized the first international conference on Fault and Top Seals in 2003. These conferences have continued to be held at roughly 4 yearly intervals and have brought together scientists from a wide range of disciplines to discuss new research findings and workflows relevant to predicting fault and top seal behaviour, as well as presenting case studies covering both successful and unsuccessful attempts to predict sealing capacity.Thematic collection: This article is part of the Fault and top seals collection available at: https://www.lyellcollection.org/cc/fault-and-top-seals-2019


Author(s):  
Teresa ADAMCZAK-BIAŁY ◽  
Adam WÓJCICKI

Information presented in the article allows us to introduce one of the ways of reducing anthropogenic greenhouse gas emissions responsible for the temperature increase and climate change. This is the technology of capture and underground storage of carbon dioxide in geologic structures (Carbon Capture and Storage/Sequestration – CCS). Most of the large-scale CCS projects (i.e. capture and storage of an order of magnitude of 1 million tonnes of CO2 per year) operate in the United States and Canada. Many of them are associated with the use of CO2 captured from the industrial processes for the enhanced oil recovery (EOR). The presented examples of projects are: Boundary Dam Integrated Carbon Capture and Sequestration Demonstration Project (Canada), Great Plains Synfuels and Weyburn-Midale Project (Canada), and Kemper County IGCC Project (United States). CCS projects are crucial for demonstrating the technological readiness and reduce the cost of wider commercial implementation of capture and geological storage of CO2. The status of the projects on geological storage of CO2 in 2015 is 15 large-scale CCS projects operating around the world, and 7 projects in execution.


Author(s):  
Geoffrey P Hammond ◽  
Áine O’Grady

Internationally, there has been a move by nations to decarbonise their electricity systems in an effort to tackle rising territorial emissions. No consensus has been fully reached on best approach, which has led to significant divergence in energy policy between countries and a consequential lack of long-term clarity. Additionally, recent UK policy failures, in terms of stimulating greater energy efficiency and encouraging energy innovation, highlight the huge challenge involved in developing and achieving a low carbon future. Steps to decarbonise electricity whilst also providing a secure and affordable supply, can lead to varying life-cycle environmental consequences. A UK research consortium developed three pathways to explore this move to a more electric low carbon future out to 2050. These pathways have been previously evaluated in terms of their life-cycle energy and environmental performance within a wider sustainability framework. Over the course of the project, greater understanding of the generation technologies and the functionality of the overall system under the different regimes were gained. Here, the environmental consequences of the most recent version of the pathways are presented on a life-cycle basis from ‘cradle-to-gate.’ Thus, the environmental impact of technological trends in UK energy policy and their effect on the pathways are explored through a series of sensitivity analyses. The three UK energy futures incorporating ‘disruptive’ technological options were examined based on the phase out of coal use in favour of gas-fired power, ranging penetration levels of carbon capture and storage, and the allocation and fuel type used for combined heat and power. Recommendations are proposed to help frame future energy policy choices in order to limit the environmental consequences of future electricity systems.


Author(s):  
E Estévez ◽  
L Valle ◽  
D del Barrio ◽  
G Blázquez ◽  
T Kovács ◽  
...  

2012 ◽  
Vol 23 (2-3) ◽  
pp. 395-404
Author(s):  
Catherine T. Morgan

A small-scale educational outreach pilot project was undertaken in Scottish Schools in 2010. The project aimed to share contemporary, cutting edge science and technological developments in the field of Carbon Capture and Storage (CCS) with communities in the vicinity of Longannet Power Station (a potential CCS demonstration site), in Fife, Scotland. An education team from The Scottish Earth Science Education Forum delivered teacher professional development workshops and school lessons in local primary and secondary schools. Results from research conducted with participants suggest that the impacts on both the teacher and pupil sample group were significant, positively impacting perceptions about science, careers, and the technology itself.


2020 ◽  
Vol 10 (12) ◽  
pp. 4237
Author(s):  
Se-Min Jeong ◽  
Seokwon Ko ◽  
Wu-Yang Sean

Among various carbon capture and storage technologies to mitigate global warming and ocean acidification due to greenhouse gases, ocean geological storage is considered the most feasible for Korea due to insufficient inland space to store CO2. However, the risk of CO2 leakage and the behavior and environmental effects of the leaked CO2 need to be assessed for its successful implementation. Therefore, the behavior of CO2 bubbles/droplets dissolving into the surrounding seawater and the diffusion of dissolved CO2 by ocean flows should be accurately predicted. However, finding corresponding research has been difficult in Korea. Herein, the behavior and convection-diffusion of CO2 that was assumed to have leaked from the seafloor near the southeastern coast of Korea were numerically predicted using a multi-scale ocean model for the first time. In the simulation region, one of the pilot projects of CO2 ocean geological storage had started but has been temporarily halted. In the ocean model, hydrostatic approximation and the Eulerian–Lagrangian two-phase model were applied for meso- and small-scale regions, respectively. Parameters for the simulations were the leakage rate and the initial diameter of CO2. Results revealed that all leaked and rising CO2 bubbles were dissolved into the seawater before reaching the free surface; further, the change in the partial pressure of CO2 did not exceed 500 ppm during 30 days of leakage for all cases.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3580
Author(s):  
Odi Fawwaz Alrebei ◽  
Ali Al-Doboon ◽  
Philip Bowen ◽  
Agustin Valera Medina

Due to growing concerns about carbon emissions, Carbon Capture and Storage (CCS) techniques have become an interesting alternative to overcome this problem. CO2-Argon-Steam-Oxy (CARSOXY)-fuel gas turbines are an innovative example that integrates CCS with gas turbine powergen improvement. Replacing air-fuel combustion by CARSOXY combustion has been theoretically proven to increase gas turbine efficiency. Therefore, this paper provides a novel approach to continuously supply a gas turbine with a CARSOXY blend within required molar fractions. The approach involves H2 and N2 production, therefore having the potential of also producing ammonia. Thus, the concept allows CARSOXY cycles to be used to support production of ammonia whilst increasing power efficiency. An ASPEN PLUS model has been developed to demonstrate the approach. The model involves the integrations of an air separation unit (ASU), a steam methane reformer (SMR), water gas shift (WGS) reactors, pressure swing adsorption (PSA) units and heat exchanged gas turbines (HXGT) with a CCS unit. Sensitivity analyses were conducted on the ASU-SMR-WGS-PSA-CCS-HXGT model. The results provide a baseline to calibrate the model in order to produce the required CARSOXY molar fraction. A MATLAB code has also been developed to study CO2 compression effects on the CARSOXY gas turbine compressor. Thus, this paper provides a detailed flowsheet of the WGS-PSA-CCS-HXGT model. The paper provides the conditions in which the sensitivity analyses have been conducted to determine the best operable regime for CARSOXY production with other high valuable gases (i.e., hydrogen). Under these specifications, the sensitivity analyses on the (SMR) sub-model spots the H2O mass flow rates, which provides the maximum hydrogen level, the threshold which produces significant CO2 levels. Moreover, splitting the main CH4 supply to sub-supply a SMR reactor and a furnace reactor correlates to best practices for CARSOXY. The sensitivity analysis has also been performed on the (ASU) sub-model to characterise its response with respect to the variation of air flow rate, distillation/boiling rates, product/feed stage locations and the number of stages of the distillation columns. The sensitivity analyses have featured the response of the ASU-SMR-WGS-PSA-CCS-HXGT model. In return, the model has been qualified to be calibrated to produce CARSOXY within two operability modes, with hydrogen and nitrogen or with ammonia as by-products.


Sign in / Sign up

Export Citation Format

Share Document