scholarly journals Pollution Characteristics, Distribution and Ecological Risk of Potentially Toxic Elements in Soils from an Abandoned Coal Mine Area in Southwestern China

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 330
Author(s):  
Libo Pan ◽  
Xiao Guan ◽  
Bo Liu ◽  
Yanjun Chen ◽  
Ying Pei ◽  
...  

Acid mine drainage (AMD) from abandoned coal mines can lead to serious environmental problems due to its low pH and high concentrations of potentially toxic elements. In this study, soil pH, sulfur (S) content, and arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), zinc (Zn), iron (Fe), manganese (Mn), and mercury (Hg) concentrations were measured in 27 surface soil samples from areas in which coal-mining activities ceased nine years previously in Youyu Catchment, Guizhou Province, China. The soil was acidic, with a mean pH of 5.28. Cadmium was the only element with a mean concentration higher than the national soil quality standard. As, Cd, Cu, Ni, Zn, Mn, Cr, and Fe concentrations were all higher than the background values in Guizhou Province. This was especially true for the Cd, Cu, and Fe concentrations, which were 1.69, 1.95, and 12.18 times their respective background values. The geoaccumulation index of Cd and Fe was present at unpolluted to moderately polluted and heavily polluted levels, respectively, indicating higher pollution levels than for the other elements in the study area. Spatially, significantly high Fe and S concentrations, as well as extremely low pH values, were found in the soils of the AMD sites; however, sites where tributaries merged with the Youyu River (TM) had the highest Cd pollution level. Iron originated mainly from non-point sources (e.g., AMD and coal gangues), while AMD and agricultural activity were the predominant sources of Cd. The results of an eco-risk assessment indicated that Cd levels presented a moderate potential ecological risk, while the other elements all posed a low risk. For the TM sites, the highest eco-risk was for Cd, with levels that could be harmful for aquatic organisms in the wet season, and may endanger human health via the food chain.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyeryeong Jeong ◽  
Jin Young Choi ◽  
Kongtae Ra

AbstractPotentially toxic elements (PTEs) were investigated in the different sizes of road deposited sediments (RDS) around the active smelting industry to understand their sources and to assess the pollution and ecological risk levels. The highest PTEs concentrations was shown near the raw materials import port and the smelting facilities. The fine particles of RDS showed extremely high PTEs concentrations. Zn has the highest mean concentration in the < 63 μm particle size of RDS, followed by Pb > Cu > As > Cr > Ni > Cd > Hg. The PTEs concentrations of this study were the highest values compared to the soils around the smelter and the RDS in urban and industrial areas in the world. This indicates that these PTEs pollution in RDS were mainly attributed to the transportation of raw materials for the smelting industry. According to nemerow pollution index calculation, RDS at all sampling sites with particles of less than 250 mm was seriously polluted with PTEs. The ecological risk was also found to be very high in all RDS fractions and highly toxic elements such as Cd, Pb and Hg pose extremely risk. Given the total amounts PTEs in the road surface, it is necessary to apply RDS removal management plan to reduce the PTEs pollution.


2021 ◽  
Vol 27 (4) ◽  
pp. 210232-0
Author(s):  
Julio Marín ◽  
Marinela Colina ◽  
Hilda Ledo ◽  
P.H.E. Gardiner

The evaluation of potential ecological risk of aquatic sediments associated with the presence of potentially toxic elements (PTE) determines its degree of danger on native biota. In this work, the potential ecological risk of V, Ti, Cr, Ni, Cu, Zn, As, Se, Cd, Sn, Hg and Pb in superficial sediments is explained in three different areas of Lake Maracaibo: El Tablazo Bay, Strait of Maracaibo and the lake itself, through a multi-guideline approach (elemental enrichment (enrichment factor, contamination degree, pollutant load index and geo-accumulation index), sediment quality guidelines and risk assessment code). The PTE levels ranged from < 0.025 to 176.722 mg·kg−1 DW, with an overall proportion of V > Ti > Pb > Zn > Cr > Cu > Ni > As > Cd > Se > Hg > Sn. The PTE concurrent effect on biota was El Tablazo Bay > lake > Strait of Maracaibo. The superficial sediments of Lake Maracaibo constitute a medium with a high potential ecological risk on estuarine biota. This is mainly due to the levels of As in El Tablazo Bay, Cd in the Strait of Maracaibo and Pb in the lake area. This represents a latent toxicity hazard for native biological communities and other associated organisms.


Author(s):  
Pedro Dinis ◽  
Amílcar Armando ◽  
João Pratas

The Mussulo lagoon is a coastal environment located near Luanda, one of the SW African cities that has been growing more rapidly during the last decades. Geochemical, mineralogical, and grain-size data obtained for the lagoon sediments are analyzed together, in order to establish the factors that control the distribution of some potentially toxic elements (PTEs). Sediments from northern location tend to be enriched in feldspar and, despite some variability in grain-size distributions, in fine-grained detrital minerals; southern lagoon sediments display very homogenous grain-size distribution and are enriched in minerals associated with salt precipitation (halite and gypsum). Multivariate statistics reveal a close link between some PTEs, namely Co, Hg, Ni, and Pb, for which an anthropogenic source can be postulated. On the other end, As seems to be associated with natural authigenic precipitation in southern lagoon sectors. Sediments enriched in clay also tend to yield more Fe, Mn, Zn, and Cu, but it is unclear whether their sources are natural or anthropogenic. Hazard indexes calculated for children are higher than 1 for As and Co, indicating potential non-carcinogenic risk. For the other elements, and for adults, there is no potential carcinogenic or non-carcinogenic risk.


Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 29
Author(s):  
Saijun Zhou ◽  
Renjian Deng ◽  
Andrew Hursthouse

We evaluated the direct release to the environment of a number of potentially toxic elements (PTEs) from various processing nodes at Xikuangshan Antimony Mine in Hunan Province, China. Sampling wastewater, processing dust, and solid waste and characterizing PTE content (major elements Sb, As, Zn, and associated Hg, Pb, and Cd) from processing activities, we extrapolated findings to assess wider environmental significance using the pollution index and the potential ecological risk index. The Sb, As, and Zn in wastewater from the antimony benefication industry and a wider group of PTEs in the fine ore bin were significantly higher than their reference values. The content of Sb, As, and Zn in tailings were relatively high, with the average value being 2674, 1040, and 590 mg·kg−1, respectively. The content of PTEs in the surface soils surrounding the tailings was similar to that in tailings, and much higher than the background values. The results of the pollution index evaluation of the degree of pollution by PTEs showed that while dominated by Sb, some variation in order of significance was seen namely for: (1) The ore processing wastewater Sb > Pb > As > Zn > Hg > Cd, (2) in dust Sb > As > Cd > Pb > Hg > Zn, and (3) surface soil (near tailings) Sb > Hg > Cd > As > Zn > Pb. From the assessment of the potential ecological risk index, the levels were most significant at the three dust generation nodes and in the soil surrounding the tailings reservoir.


Author(s):  
Jiankang Wang ◽  
Bo Gao ◽  
Shuhua Yin ◽  
Dongyu Xu ◽  
Laisheng Liu ◽  
...  

Simultaneous ecological and health risk assessments of potentially toxic elements in soils and sediments can provide substantial information on their environmental influence at the river-basin scale. Herein, soil and sediment samples were collected from the Guishui River basin to evaluate the pollution situation and the ecological and health risk of potentially toxic elements. Various indexes were utilized for quantitatively assessing their health risks. Pollution assessment by geo-accumulation index showed that Cd had “uncontaminated to moderately polluted” status in the soils and sediments. Potential ecological risk index showed that the Guishui River basin was at low risk in general, but Cd was classified as “moderate or considerable ecological risk” both in the soils and sediments. Health risk assessment calculated human exposure from soils and indicated that both non-carcinogenic and carcinogenic risks of the selected potentially toxic elements were lower than the acceptable levels. Health risks posed by potentially toxic elements bio-accumulated in fish, stemming from sediment resuspension, were also assessed. Non-carcinogenic hazard index indicated no adverse health effects on humans via exposure to sediments; however, in general, Cr contributed largely to health risks among the selected potentially toxic elements. Therefore, special attention needs to be paid to the Guishui River basin in the future.


2019 ◽  
Vol 145 ◽  
pp. 377-389 ◽  
Author(s):  
Ahmad Reza Lahijanzadeh ◽  
Maryam Mohammadi Rouzbahani ◽  
Sima Sabzalipour ◽  
Seyed Mohammad Bagher Nabavi

2020 ◽  
Vol 10 (16) ◽  
pp. 5623
Author(s):  
Wen Liu ◽  
Long Ma ◽  
Jilili Abuduwaili

The Aral Sea has received worldwide attention for the deterioration of its biological and chemical status. The accumulation of potentially toxic elements (PTEs) in the lake sediments reflects changes in the surrounding watershed and represents a potential hazard for the lake ecosystem. In conjunction with existing environmental records from the Aral Sea basin, sedimentary records of PTEs in North Aral Sea covering a short time scale, anno Domini (AD) 1950–2018, were used to reveal historical changes in PTE concentrations and potential risks to lake functioning. The results suggested that the levels of PTEs in lake sediments from North Aral Sea changed abruptly around 1970 AD, which is concurrent with the intensification of human activities within the basin. After 1970 AD, with the exception of As, which remained at unpolluted-to-moderately polluted levels, the geo-accumulation indices of the remaining PTEs studied (V, Cr, Zn, Co, Pb, Ni, Cu and Cd) inferred a moderately polluted status. Before 1970 AD, the total ecological risk was low, but since 1970, the total ecological risk index has exceeded 150, indicating moderate risk. Historical changes in PTE levels of lake sediments from North Aral Sea and their potential ecological risks are reported for the first time. The conclusions provide an important reference for the protection of lake ecosystems and will provide data for regional/global comparisons of environmental change during the Anthropocene.


Sign in / Sign up

Export Citation Format

Share Document