scholarly journals Episodic Precipitation of Wolframite during An Orogen: The Echassières District, Variscan Belt of France

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 923 ◽  
Author(s):  
Loïs Monnier ◽  
Jérémie Melleton ◽  
Olivier Vanderhaeghe ◽  
Stefano Salvi ◽  
Philippe Lach ◽  
...  

Monazite and rutile occurring in hydrothermally altered W mineralizations, in the Echassières district of the French Massif Central (FMC), were dated by U-Pb isotopic systematics using in-situ Laser ablation-inductively coupled plasma–quadrupole mass spectrometry (LA-ICP-MS). The resulting dates record superimposed evidence for multiple percolation of mineralizing fluids in the same area. Cross-referencing these ages with cross-cutting relationships and published geochronological data reveals a long history of more than 50 Ma of W mineralization in the district. These data, integrated in the context of the Variscan belt evolution and compared to other major W provinces in the world, point to an original geodynamic-metallogenic scenario. The formation, probably during the Devonian, of a quartz-vein stockwork (1st generation of wolframite, called wolframite “a”; >360 Ma) of porphyry magmatic arc affinity is analogous to the Sn-W belts of the Andes and the Nanling range in China. This stockwork was affected by Barrovian metamorphism, induced by tectonic accretion and crustal thickening, during the middle Carboniferous (360 to 350 Ma). Intrusion of a concealed post-collisional peraluminous Visean granite, at 333 Ma, was closely followed by precipitation of a second generation of wolframite (termed “b”), from greisen fluids in the stockwork and host schist. This W-fertile magmatic episode has been widely recorded in the Variscan belt of central Europe, e.g. in the Erzgebirge, but with a time lag of 10–15 Ma. During orogenic collapse, a third magmatic episode was characterized by the intrusion of numerous rare-metal granites (RMG), which crystallized at ~310 Ma in the FMC and in Iberia. One of these, the Beauvoir granite in the Echassières district, led to the formation of the wolframite “c” generation during greisen alteration.

2017 ◽  
Vol 81 (1) ◽  
pp. 15-33 ◽  
Author(s):  
Karel Breiter ◽  
Michaela Vaňková ◽  
Michaela Vašinová Galiová ◽  
Zuzana Korbelová ◽  
Viktor Kanický

AbstractThe compositions of trioctahedral micas from 51 samples of granitoids with different geochemical affiliations and grades of differentiation from the Bohemian Massif, Central Europe, were analysed using electron microprobe (major elements) and laser ablation inductively coupled plasma mass spectrometry (Li, Sc, Ga, Ge, Nb, In, Sn, Cs, Ta, W, Tl). The micas form a continuous evolutionary series from phlogopite to zinnwaldite. The phlogopites and biotites from the I-type rocks are characterized by 5.5–5.7 Si, 2.4–2.6 Al, <0.1 Li atoms per formula unit [apfu] and Mg/(Mg + Fe) = 0.4–0.8. The biotites from the S-type granites usually contain 5.3–5.7 Si, 3.2–3.6 Al, 0.1–0.3 Li apfu and Mg/(Mg + Fe) = 0.15–0.4. The annites and zinnwaldites from the rare-metal granites contain 5.7–6.8 Si, 3.2–3.8 Al, 0.6–2.6 Li apfu and Mg/(Mg + Fe) < 0.1. The concentrations of F, Rb, Cs and Tl increase from the phlogopites and biotites to zinnwaldites: F 0.1 → 8 wt.%, Rb2O 0.05 → 1.7 wt.%, Tl 2 → 50 ppm and Cs 40 → 2000 ppm. The concentrations of Sn, Nb, Ta and W in phlogopites and biotites from the I- and S-type granitoids generally correlate with those of the parent rocks and reach values of (in ppm) 20–100 Sn, 20–250 Nb, 1–20 Ta and <5 W. The highest concentrations were found in the Li-annites in the relatively early facies of rare-metal granites (in ppm): 250–600 Sn, 400–600 Nb, 60–120 Ta and 50– 120 W. The zinnwaldites in the late rare-metal granites facies are impoverished in these elements, which is explained by contemporaneous crystallization of cassiterite and columbite. Lithium enters the crystal lattice of trioctahedral micas via the exchange vector Li3□Si3Fe–6Al–1up to concentrations of ∼2.5 wt.% Li2O (1.5 apfu Li). At higher Li concentrations, Li is incorporated through the exchange vector Li3Si1□–1Fe–2Al–1.


Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 456 ◽  
Author(s):  
Yonggang Feng ◽  
Ting Liang ◽  
Ze Zhang ◽  
Yiqian Wang ◽  
Yi Zhou ◽  
...  

The Kalu’an-Azubai pegmatite field, one of the most important rare-metal metallogenic regions in China, contains a large number of pegmatite dikes belonging to spodumene and lepidolite subtypes. Columbite-group minerals (CGMs) collected from three spodumene subtype pegmatites (No. 802, No. 803, and No. 805 pegmatites) were analyzed for major element contents using EPMA (electron probe micro-analyzer) and dated using LA-ICP-MS (laser ablation-inductively coupled plasma mass spectrometer). The crystallization ages of the CGMs from No. 802, No. 803, and No. 805 pegmatites are 209.5 ± 1.4 Ma (2σ), 198.3 ± 2.0 Ma (2σ), and 224.3 ± 2.9 Ma (2σ), respectively. Oscillatory zoning and/or sector zoning along with the associated mineral assemblages suggest that the dated columbite is of magmatic origin. The crystallization ages of the columbite grains thus represent the emplacement ages of the Li pegmatites. Therefore, our dating results indicate that there were three emplacement events of the Li-rich pegmatite-forming melts in a timeframe of ~30 Ma. In combination with previous studies, we conclude that the Li pegmatites were formed before the Be-Ta-Nb pegmatites (~194–192 Ma), which precludes the genesis of rare-metal pegmatites via fractional crystallization of a granitic magma in the Kalu’an-Azubai region.


1998 ◽  
Vol 35 (12) ◽  
pp. 1439-1453 ◽  
Author(s):  
Javier Fernández-Suárez ◽  
Gabriel Gutiérrez-Alonso ◽  
George A Jenner ◽  
Simon E Jackson

The Pola de Allande pre-Variscan tonalite-granodiorite plutons are located in the Narcea Antiform, at the boundary zone between the Cantabrian and west Asturian Leonese zones of the Iberian Variscan belt. These granitoids were intruded into a Neoproterozoic siliciclastic sedimentary sequence with subordinate volcanic intercalations and were subsequently overprinted by Variscan thrust-related shear deformation. U-Pb laser ablation inductively coupled plasma - mass spectrometry (ICP-MS) dating of zircons from two plutons yielded concordant ages of intrusion of 605 ± 10 and 580 ± 15 Ma. To the authors' knowledge, this is the first reported U-Pb Cadomian-Avalonian age for igneous rocks in this section of the Iberian Variscan belt. These intrusions are coeval with the main episode of dominantly calc-alkaline magmatic activity related to Cadomian-Avalonian subduction. Major and trace element composition of the granitoids is characteristic of I-type high-K calc-alkaline granitoids generated in continental arc settings, and are comparable to those of coeval granitoids in other areas of the Cadomian-Avalonian belt. Sr and Nd isotopic signatures indicate that the genesis of the Pola de Allande granitoids involved either mixing of mantle melts of Cadomian extraction with an older enriched crust (Eburnean-Icarthian, i.e., ca. 2 Ga old crust) or melting of a mafic infracrustal protolith with a Grenville age (ca. 1.2 Ga) mantle extraction. The Neoproterozoic sediments, hosting the Pola de Allande granitoids and present in large areas of northwest Iberia, may represent the back-arc basin of the subduction complex in which the Avalon composite terrane constituted the main magmatic arc.


2009 ◽  
Vol 60 (6) ◽  
pp. 495-504 ◽  
Author(s):  
Ioan Balintoni ◽  
Constantin Balica ◽  
Monica Cliveţi ◽  
Li-Qiu Li ◽  
Horst Hann ◽  
...  

The emplacement age of the Muntele Mare Variscan granite (Apuseni Mountains, Romania)Like the Alps and Western Carpathians, the Apuseni Mountains represent a fragment of the Variscan orogen involved in the Alpine crustal shortenings. Thus the more extensive Alpine tectonic unit in the Apuseni Mountains, the Bihor Autochthonous Unit is overlain by several nappe systems. During the Variscan orogeny, the Bihor Unit was a part of the Someş terrane involved as the upper plate in subduction, continental collision and finally in the orogen collapse and exhumation. The Variscan thermotectonic events were marked in the future Bihor Unit by the large Muntele Mare granitoid intrusion, an S-type anatectic body. Zircon U-Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) dating yielded a weighted mean age of 290.9 ± 3.0 Ma and a concordia age of 291.1 ± 1.1 Ma. U-Pb isotope dilution zircon analyses yielded a lower intercept crystallization age of 296.6 + 5.7/-6.2 Ma. These two ages coincide in the error limits. Thus, the Muntele Mare granitoid pluton is a sign of the last stage in the Variscan history of the Apuseni Mountains. Many zircon grains show inheritance and/or Pb loss, typical for anatectic granitoid, overprinted by later thermotectonic events.


2021 ◽  
pp. 3-12
Author(s):  
N. Y. Nikulova ◽  
◽  
O. V. Udoratina ◽  
I. V. Kozyreva

The lithological and geochemical features of the metasandstones of the Svetlinskaya and Vizingskaya formations of the Middle Late Riphean Chetlas series in the Middle Timan, which are a substrate of rare-metal-rare-earth mineralization in several ore occurrences of the Kosyus ore cluster, have been investigated. The interpretation of the results of traditional weight chemical and mass spectrometric inductively coupled plasma (ICP MS) analyses allowed us to identify differences in the material composition of metapesanics, mainly due to changes in the degree of sedimentation maturity of terrigenous material coming from the demolition areas. The composition of metasandstones in various ratios includes both weakly weathered products of destruction of volcanic rocks of intermediate/basic composition, and altered, including under conditions of the weathering crust, metaterrigenous formations. The accumulation of sediments took place in a shallow coastal-marine environment with changing hydrodynamics, which affected the rate of destruction of rocks in paleo-catchments.


Author(s):  
B. B Amralinova ◽  
O. V Frolova ◽  
I. E Mataibaeva ◽  
B. B Agaliyeva ◽  
S. V Khromykh

Purpose. Study on the chemical composition of lake waters, salt brines, brine and bottom sediments to identify the mineralization of rare metals and other types of minerals. Methodology. Mass spectrometric studies (mass spectrometer with inductively coupled plasma ICP-MS 7500cx from AgilentTechnologies) for the purpose of high-precision analytical studies on the chemical composition of salt lake water in order to assess the content of rare elements. The use of unmanned aerial vehicles for linking and geometrizing lakes. Findings. Field surveys on the geometrization and linking of lakes were carried out. From the materials obtained with the help of the drone, orthophotoplans were created (with a measurement accuracy of up to 1 centimeter), as well as a digital terrain model and a digital terrain model. A complex of analytical works was carried out using inductively coupled plasma spectrometry. When analyzing the distribution graphs of the absolute content of micro-components in the waters of the lakes of the Delbegeteysky massif, it was found that all samples were enriched with sodium, phosphorus, iron, magnesium and barium. The results of the analyses revealed the predominance of sulfates and chlorides in the composition of the surface waters of most of the water bodies of the Delbegeteysky massif. At the Burabai site, lake waters are characterized by an alkaline reaction of the environment (on average = 8.71). At the same time, the salinity of water bodies varies from 05 to 9 g/dm3. Originality. Large-scale outcrops of granites of the Kalba complex (P1), with which a rare-metal type of mineralization is genetically associated, are known to be on the selected study sites. Quartz-wire-greisen and quartz-wire tin, tin-tungsten and tungsten formations are also widely developed. Considering the large geochemical migration ability of rare alkaline elements in the thickness of loose sediments as a result of intensive geodynamic processes in the East Kazakhstan region, it is possible to assume the possibility of their migration to the upper horizons and accumulation in salt lakes localized within the area of development of granite intrusions of Permian age and associated deep tectonic faults. Practical value. The results of the research can serve as a revival of the rare metal industry in the region, which will allow developing new high-tech industries and creating new jobs in this area. The obtained results can be used for setting up further exploration and operational work on the selected promising areas.


2020 ◽  
Author(s):  
Clément Montmartin ◽  
Michel Faure ◽  
Stéphane Scaillet ◽  
Hugues Raimbourg

&lt;p&gt;In the SE part of the Variscan French Massif Central, the C&amp;#233;vennes area belongs to the para-autochthonous unit of the southern Variscan belt. This area underwent three metamorphic events (Faure et al., 2001). &amp;#160;I) A green schist to low amphibolite facies one (500&amp;#176;C, 4.5Kb Arnaud, 1997) developed in micaschists and quartzites. These rocks were stacked as south-directed nappes during the final stage of the Variscan crustal thickening dated at ca 340 Ma by &lt;sup&gt;40&lt;/sup&gt;Ar/&lt;sup&gt;39&lt;/sup&gt;Ar on biotite (Caron, 1994). This early event was responsible for the flat-lying foliation, the N-S striking stretching lineation, and intrafolial foliation. II) A high temperature event (680&amp;#176;C, 4.5kb Rakib, 1996) dated at ca 325 Ma (&lt;sup&gt;40&lt;/sup&gt;Ar/&lt;sup&gt;39&lt;/sup&gt;Ar on two biotites, Najoui et al, 2000) overprinted the early one. On the basis of the mineral assemblages of this event, a NE-ward increase of the T conditions was interpreted as a remote effect of the Velay Dome (Rakib, 1996). III) Finally, the M&lt;sup&gt;t&lt;/sup&gt;-Loz&amp;#232;re and Aigoual-S&lt;sup&gt;t&lt;/sup&gt;-Guiral-Liron monzogranitic plutons intruded the C&amp;#233;vennes para-autochthonous unit. Monazite and biotite yield U-Pb, and &lt;sup&gt;40&lt;/sup&gt;Ar/&lt;sup&gt;39&lt;/sup&gt;Ar ages at 315-303Ma and 306 Ma , respectively (Brichaud et al. 2008). The pluton emplacement conditions are determined at 695&amp;#176;C, 1.5Kb (Najoui et al, 2000).&lt;/p&gt;&lt;p&gt;We report Raman Spectrometry of Carbonaceous Matter (RSCM) paleotemperature data acquired on more than 100 samples throughout the entire C&amp;#233;vennes area. These show a regional homogeneous thermal distribution with a 535 &amp;#177; 50 &amp;#176;C mean temperature without any geometric correlation with the nappes structure, nor the granitic intrusions. Moreover, no thermal increase towards the NE can be documented. SW of the Aigoual-S&lt;sup&gt;t&lt;/sup&gt;-Guiral-Liron massif, our RSCM data document a temperature jumps between the overlying C&amp;#233;vennes micaschists and the underlying epimetamorphic rocks belonging the the Fold-and-Thust belt unit of the French Massif Central.&lt;/p&gt;&lt;p&gt;In order to constrain the age of this regional thermal event, we &lt;sup&gt;40&lt;/sup&gt;Ar/&lt;sup&gt;39&lt;/sup&gt;Ar dated 25 new regionally-distributed syn- and post-folial muscovites by step heating along two N-S cross sections within the C&amp;#233;vennes micaschists series. In areas distant from the plutons, the muscovite yields a ca 325 Ma age interpreted as the one of the HT event recorded by the RSCM measurements. However, young muscovite ages at ca 305Ma are observed around the plutons. We assume that the heat supplied by the plutons reset these muscovites at around 400&amp;#176;C while the organic matter cannot record the contact metamorphic peak lower than the regional one. Moreover, &lt;sup&gt;40&lt;/sup&gt;Ar/&lt;sup&gt;39&lt;/sup&gt;Ar in-situ analyses carried out on 5 mm-sized post folial (but deformed) biotites in the central part of the micaschist series provide ages around 320Ma. The presence of a hidden dome, underneath the C&amp;#233;vennes micaschists, similar to the pre-Velay migmatites exposed in the northern part of the C&amp;#233;vennes area (Faure et al., 2001, Be et al., 2006) is discussed.&lt;/p&gt;


2021 ◽  
Author(s):  
Frederico Sousa Guimarães ◽  
Rongqing Zhang ◽  
Bernd Lehmann ◽  
Alexandre Raphael Cabral ◽  
Francisco Javier Rios

Abstract The Mesoproterozoic Rondônia Tin Province of the Amazonian craton records a protracted history of about 600 m.y. of successive rare-metal granite intrusions and hosts the youngest known event of tin-granite emplacement of the craton—a rare-metal granite suite known as the Younger Granites of Rondônia intrusive suite. The ~1 Ga suite is currently interpreted as intracratonic magmatism resulting from a Grenvillian-age orogeny during the assembly of Rodinia. The Santa Bárbara massif is a tin-granite system of the Younger Granites of Rondônia intrusive suite that hosts Sn-Nb-Ta-W–bearing endogreisen and stockwork, as well as important placer deposits. The Santa Bárbara mine produces about 800 to 1,000 t Sn/year from placers and weathered greisen and represents about 20% of the tin mine output of the Rondônia Tin Province. Here, we report laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) cassiterite U-Pb ages of 989 ± 3 and 987 ± 6 Ma for the Santa Bárbara greisen and the cassiterite-quartz vein system, respectively. Alluvial cassiterite from placer mining has a U-Pb age of 995 ± 4 Ma, which is, within uncertainty, indistinguishable from those of primary cassiterite. These ages agree well with the previously published zircon and monazite U-Pb ages for the Santa Bárbara granite (978 ± 13 and 989 ± 13 Ma), which indicate a coeval relationship between hydrothermal tin mineralization and granite magmatism. The previously suggested 20- to 30-m.y. time span between granite magmatism and hydrothermal tin mineralization, which was based on mica K-Ar and Ar-Ar age data, is likely due to younger thermal disturbance of the isotopic systems.


1995 ◽  
Vol 52 (7) ◽  
pp. 1421-1430 ◽  
Author(s):  
Anthony J. Fowler ◽  
Steven E. Campana ◽  
Simon R. Thorrold ◽  
Cynthia M. Jones

Retrospective determination of the early life history of fish using the microelemental analysis of their otoliths is dependent upon understanding the factors that affect this elemental composition. Here, juvenile Atlantic croaker (Micropogonias undulatus) were reared under different treatments of temperature and salinity to determine their impacts on elemental inclusion rates in otoliths. Solution-based inductively coupled plasma mass spectrometry (ICPMS) was used to measure 21 isotopes in each otolith: isotopic concentrations ranged over seven orders of magnitude, and differed significantly amongst the temperature–salinity regimes. Univariate analyses identified 13 isotopes that contributed to these multivariate differences; the influence of temperature was stronger than that of salinity. Within each treatment there was a significant relationship between otolith microchemistry and otolith size. To some extent this confounded the interpretation of the between-treatment effect of temperature. In contrast, both the otolith and somatic growth rates were similar between the two salinity treatments, indicating that differences in elemental fingerprints were unambiguously related to the salinity difference, probably a response to the elemental concentrations in the tank water. Overall the study highlighted the current poor understanding of the mechanism of contamination of otoliths by trace elements and their incorporation into the otolith microstructure.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1034
Author(s):  
Chang Liu ◽  
Heng Xie ◽  
Lei Nie ◽  
Hong Wang ◽  
Yuanyuan He

Pottery is a gem in the history of human civilization and a crystallization of human wisdom. Yunnan Jianshui purple pottery is one of the four famous types of pottery in China, with a long history and superb craftsmanship. Used as tableware, research on the composition and element dissolution of pottery is extremely significant for production and health. This paper takes Jianshui purple pottery as its research object, samples its raw ores and finished products, and conducts X-ray fluorescence, scanning electron microscopy, inductively coupled plasma mass spectrometry experiments, and dissolution tests. The chemical composition, microstructure, and trace element concentrations of pottery before and after firing were measured. Results show that the dissolution of purple pottery under various use scenarios is low and meets health requirements. Combined with the characteristics of purple pottery, the composition changes and the mechanism of change before and after firing are discussed, which can be used as the theoretical basis for improving pottery production in the future.


Sign in / Sign up

Export Citation Format

Share Document