Lithogeochemical characteristics of metasandstones of the Chetlas series (Chetlassky Kamen, Middle Timan)

2021 ◽  
pp. 3-12
Author(s):  
N. Y. Nikulova ◽  
◽  
O. V. Udoratina ◽  
I. V. Kozyreva

The lithological and geochemical features of the metasandstones of the Svetlinskaya and Vizingskaya formations of the Middle Late Riphean Chetlas series in the Middle Timan, which are a substrate of rare-metal-rare-earth mineralization in several ore occurrences of the Kosyus ore cluster, have been investigated. The interpretation of the results of traditional weight chemical and mass spectrometric inductively coupled plasma (ICP MS) analyses allowed us to identify differences in the material composition of metapesanics, mainly due to changes in the degree of sedimentation maturity of terrigenous material coming from the demolition areas. The composition of metasandstones in various ratios includes both weakly weathered products of destruction of volcanic rocks of intermediate/basic composition, and altered, including under conditions of the weathering crust, metaterrigenous formations. The accumulation of sediments took place in a shallow coastal-marine environment with changing hydrodynamics, which affected the rate of destruction of rocks in paleo-catchments.

2018 ◽  
Vol 16 (4) ◽  
pp. 622-634 ◽  
Author(s):  
Kaveh Pazand ◽  
Davoud Khosravi ◽  
Mohammad Reza Ghaderi ◽  
Mohammad Reza Rezvanianzadeh

Abstract Geochemical and hydrogeochemical studies were conducted to assess the origin and geochemical mechanisms driving lead enrichment in groundwaters of semi-arid regions in Central Iran. In this study, 149 water samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of Pb and As in about 68% and 27% of the samples, respectively, exceeded WHO guidelines. Analyzing the results of ICP-MS of parental rocks and aquifer sediments shows that unweathered volcanic rocks were the primary source for lead mobilizing to groundwaters.


2017 ◽  
Vol 81 (1) ◽  
pp. 15-33 ◽  
Author(s):  
Karel Breiter ◽  
Michaela Vaňková ◽  
Michaela Vašinová Galiová ◽  
Zuzana Korbelová ◽  
Viktor Kanický

AbstractThe compositions of trioctahedral micas from 51 samples of granitoids with different geochemical affiliations and grades of differentiation from the Bohemian Massif, Central Europe, were analysed using electron microprobe (major elements) and laser ablation inductively coupled plasma mass spectrometry (Li, Sc, Ga, Ge, Nb, In, Sn, Cs, Ta, W, Tl). The micas form a continuous evolutionary series from phlogopite to zinnwaldite. The phlogopites and biotites from the I-type rocks are characterized by 5.5–5.7 Si, 2.4–2.6 Al, <0.1 Li atoms per formula unit [apfu] and Mg/(Mg + Fe) = 0.4–0.8. The biotites from the S-type granites usually contain 5.3–5.7 Si, 3.2–3.6 Al, 0.1–0.3 Li apfu and Mg/(Mg + Fe) = 0.15–0.4. The annites and zinnwaldites from the rare-metal granites contain 5.7–6.8 Si, 3.2–3.8 Al, 0.6–2.6 Li apfu and Mg/(Mg + Fe) < 0.1. The concentrations of F, Rb, Cs and Tl increase from the phlogopites and biotites to zinnwaldites: F 0.1 → 8 wt.%, Rb2O 0.05 → 1.7 wt.%, Tl 2 → 50 ppm and Cs 40 → 2000 ppm. The concentrations of Sn, Nb, Ta and W in phlogopites and biotites from the I- and S-type granitoids generally correlate with those of the parent rocks and reach values of (in ppm) 20–100 Sn, 20–250 Nb, 1–20 Ta and <5 W. The highest concentrations were found in the Li-annites in the relatively early facies of rare-metal granites (in ppm): 250–600 Sn, 400–600 Nb, 60–120 Ta and 50– 120 W. The zinnwaldites in the late rare-metal granites facies are impoverished in these elements, which is explained by contemporaneous crystallization of cassiterite and columbite. Lithium enters the crystal lattice of trioctahedral micas via the exchange vector Li3□Si3Fe–6Al–1up to concentrations of ∼2.5 wt.% Li2O (1.5 apfu Li). At higher Li concentrations, Li is incorporated through the exchange vector Li3Si1□–1Fe–2Al–1.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1032
Author(s):  
Pei Zan ◽  
Shouyu Chen ◽  
Jinduo Chen ◽  
Shengli Li

This study discussed the pertrological classification, geochronology, petrogenesis and tectonic evolution of early Paleozoic granites from the Xingshuping gold deposit in the East Qinling orogenic belt. In order to achieve this target, we carried out an integrated study of zircon U–Pb age, whole-rock major and trace elements, as well as Sr–Nd–Hf isotope compositions for the Xingshuping granites (part of the Wuduoshan pluton) from the Erlangping unit. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating constrains the emplacement age of the Xingshuping granites at 446.2 ± 1.2 Ma. The rocks at Xingshuping can be divided into two types: mainly biotite granite and monzonitic granite. The biotite granites are typical adakitic rocks, while the monzonitic granites show characteristics similar to normal arc volcanic rocks. The geochemical compositions reveal that they were derived from a clay-rich, plagioclase-rich and biotite-rich psammitic lower continental crust source, with contributions of mantle-derived magmas. The distinction is that the biotite granites were primarily derived from partial melting in a syn-collision extension setting, whereas the monzonitic granite went through a fractional crystallization process in an intraplate anorogenic setting.


Author(s):  
Jia Chang ◽  
Andreas Audétat

Abstract Melt inclusions represent a unique tool to reconstruct the composition and chemical evolution of silicate melts in magmatic systems. Laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) is the most commonly used microanalytical technique to analyze crystallized melt inclusions without prior re-homogenization. Well-preserved melt inclusions can be quantified by subtracting the contribution of co-ablated host with a carefully selected internal standard. However, post-entrapment compositional re-equilibration commonly renders this task difficult, to the same degree as it would affect any quantification after prior re-homogenization. In this study, we first examine well-preserved, crystallized melt inclusions hosted in olivine, plagioclase, apatite, clinopyroxene and orthopyroxene from porphyry dikes and volcanic rocks to test various quantification strategies and evaluate the associated uncertainties, and then we use these strategies to quantify coarsely crystallized melt inclusions from gabbroic rocks at Marble Canyon (USA) and Laiyuan (China) that experienced severe post-entrapment modifications due to relatively slow cooling rates. The results demonstrate that even for well-preserved melt inclusions hosted in chemically complex minerals the uncertainty related to inclusion–host deconvolution can be rather high (up to 30‒50% for host-incompatible trace elements significantly above their limits of detection), though other uncertainties inherent to LA-ICP-MS analysis are relatively small (typically ≤5‒10%). The deconvolution-related uncertainty can be minimized to ca. 10% by (i) choosing whole rocks that are fresh and representative of magmatic liquids, (ii) choosing the smallest possible spot size to ablate the melt inclusions, and (iii) choosing a host endmember that is compositionally as similar as possible to the one ablated together with the inclusion. Results of coarsely crystallized melt inclusions from gabbroic rocks suggest that the range of elements affected by post-entrapment re-equilibration varies from intrusion to intrusion. Olivine-hosted melt inclusions from Marble Canyon appear to have diffusively lost Fe, Ti and Ca, whereas those from Laiyuan lost Fe, Na, Al, Ca, Ti and Y and gained V. However, the relative abundances of K, P, Rb, Sr, Zr, Nb, Mo, Cs, Ba, Ce, Ta, Pb, Th, U and ±Cu appear unchanged. Plagioclase-hosted melt inclusions from Marble Canyon are relatively well-preserved, whereas those from Laiyuan lost significant amounts of Fe, K, Mg, Mn, Rb and Co. Apatite-hosted melt inclusions seem well preserved with regard to most elements except for Cu. These results suggest that despite the post-entrapment modification of certain element concentrations and the associated difficulties in melt inclusion quantification, information on the approximate abundances of other elements that are invaluable for petrogenetic and metallogenic studies can still be retrieved from melt inclusions in gabbroic rocks using the LA-ICP-MS technique.


Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 456 ◽  
Author(s):  
Yonggang Feng ◽  
Ting Liang ◽  
Ze Zhang ◽  
Yiqian Wang ◽  
Yi Zhou ◽  
...  

The Kalu’an-Azubai pegmatite field, one of the most important rare-metal metallogenic regions in China, contains a large number of pegmatite dikes belonging to spodumene and lepidolite subtypes. Columbite-group minerals (CGMs) collected from three spodumene subtype pegmatites (No. 802, No. 803, and No. 805 pegmatites) were analyzed for major element contents using EPMA (electron probe micro-analyzer) and dated using LA-ICP-MS (laser ablation-inductively coupled plasma mass spectrometer). The crystallization ages of the CGMs from No. 802, No. 803, and No. 805 pegmatites are 209.5 ± 1.4 Ma (2σ), 198.3 ± 2.0 Ma (2σ), and 224.3 ± 2.9 Ma (2σ), respectively. Oscillatory zoning and/or sector zoning along with the associated mineral assemblages suggest that the dated columbite is of magmatic origin. The crystallization ages of the columbite grains thus represent the emplacement ages of the Li pegmatites. Therefore, our dating results indicate that there were three emplacement events of the Li-rich pegmatite-forming melts in a timeframe of ~30 Ma. In combination with previous studies, we conclude that the Li pegmatites were formed before the Be-Ta-Nb pegmatites (~194–192 Ma), which precludes the genesis of rare-metal pegmatites via fractional crystallization of a granitic magma in the Kalu’an-Azubai region.


2011 ◽  
Vol 48 (1) ◽  
pp. 45-61 ◽  
Author(s):  
M. A. Ramos-Arias ◽  
J. D. Keppie

High-grade and high-pressure rocks in Acatlán Complex (southern Mexico) are inferred to have been emplaced either during the convergence and collision between Laurentia and Gondwana or during subduction on the western margin of Pangea. In the Ixcamilpa area, such rocks occur in a synformal nappe and are subdivided into (1) the Neoproterozoic–Ordovician Piaxtla Suite (metapsammite, meta-pelite, and amphibolite) that passes structurally upwards from blueschist through eclogite to amphibolite facies; intruded by (2) Cambro-Ordovician megacrystic granitoids; both of which were thrust westwards over (3) the Carboniferous Zumpango Unit consisting of clastic and meta-volcanic rocks. Laser ablation – inductively coupled plasma – mass spectrometry (LA–ICP–MS) U–Pb zircon geochronology yielded age population peaks at (i) 435–490 Ma, probably derived from Acatlán granitoids; (ii) 500–700 Ma, likely derived from the Yucatan Peninsula and Brasiliano orogens; (iii) 800–900 Ma, with provenance in the Goiás arc of eastern Amazonia; and (iv) 950–1300 Ma, sourced either from Oaxaquia, Amazonia, or Laurentia: the younger ca. 310–360 Ma ages are limited to the Zumpango Unit and likely have a local provenance. The overall similarity of the Piaxtla rocks in the Ixcamilpa area and those in the Piaxtla-Mimilulco median belt suggests that Ixcamilpa nappe roots in the median belt, which is interpreted as an extrusion zone within the Acatlán Complex. Since neither high-pressure belt represents a closed ocean, deposition of the Neoproterozoic–Ordovician rocks is inferred to have taken place on the southern margin of Rheic Ocean adjacent to Oaxaquia–Amazonia, whereas the Carboniferous rocks were deposited on the western margin of Pangea synchronous with extrusion of the high-pressure rocks.


2010 ◽  
Vol 74 (4) ◽  
pp. 691-713 ◽  
Author(s):  
T. Graupner ◽  
F. Melcher ◽  
H.-E. Gäbler ◽  
M. Sitnikova ◽  
H. Brätz ◽  
...  

AbstractNew data on rare earth element (REE) concentrations and distribution patterns of columbite-tantalite minerals from Ta-ore provinces worldwide are presented. The REE geochemistry was studied by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Five major types of chondrite-normalized REE distribution patterns are defined for columbite-group minerals (CGM) from lithium-caesium-tantalum (LCT) pegmatites and rare-metal granites. Features to discriminate between the types include (1) the shape of the pattern (e.g. flat or concave), (2) calculated ratios between groups of the REE (e.g. heavy REEN/middle REEN), and (3) the presence and intensity of anomalies (e.g. Ce*, Eu*). Four pegmatites in central and southern Africa are used as case studies to discuss application of the types of REE patterns in individual deposits. The REE fractionation during progressive evolution of the melt in a pegmatite body (either Nb → Ta or Fe → Mn fractionation lines, or both) results in smaller heavy REEN/middle REEN ratios whereas replacement of primary CGM by secondary CGM produces modifications in the light REEN patterns and the heavy REEN/middle REEN ratios also. Critical features of REE patterns such as highly variable heavy REEN/middle REEN ratios or striking differences in the appearance of Eu anomalies are discussed considering structural data of the host minerals and the differentiation behaviour of the pegmatitic melt. In general, CGM from each individual Ta-ore province are characterized by a predominance of one type of REE distribution pattern. Consequently, these patterns are suitable for tracing the origin of tantalum ore concentrates (e.g. as a forensic tool).


2019 ◽  
Vol 132 (5-6) ◽  
pp. 1031-1045
Author(s):  
Shuang Yan ◽  
Renjie Zhou ◽  
He-Cai Niu ◽  
Yue-xing Feng ◽  
Ai Duc Nguyen ◽  
...  

Abstract Volcanic-hosted iron deposits of the eastern Awulale metallogenetic belt in Central Asia possess a reserve of over 1.2 billion tons of iron ores and constitute one of the most important basements for high-grade iron resources in China. Skarns are widespread in these deposits and closely associated with iron mineralization. The ages of these skarns are unclear, and their genesis remains debated, preventing further investigation into their metallogenic processes. We focused on garnets in nine ore-bearing skarns from three large-scale iron deposits (Chagangnuoer, Dunde, and Beizhan) in the eastern Awulale belt. U-Pb dating was conducted on these garnets using our in-house reference material, the Taochong garnet (TC-13, Pb-Pb isochron age: 126.2 ± 2.3 Ma, initial 207Pb/206Pb ratio: 0.845 ± 0.022). Laser-ablation–multicollector–inductively coupled plasma–mass spectrometry (LA-MC-ICP-MS) was employed in the garnet U-Pb dating, and high-precision U-Pb ages (0.3%–1.6%) were obtained, highlighting the advantages of LA-MC-ICP-MS in dating low-U minerals. The garnet U-Pb ages of the nine skarn samples fall into three groups, i.e., 329.0 ± 5.1–326 ± 3.3 Ma (two samples), 316.3 ± 2.9–311.2 ± 2.4 Ma (six samples), and 295.6 ± 1.0 Ma (one sample), implying three episodes of skarn alteration in the volcanic-hosted iron mineralization system. The first and second episodes of skarns formed as a result of contact metasomatism between coeval volcanic rocks and limestone, and they have economically important iron mineralization. The third was likely caused by a local postcollision granitic intrusion, but its metallogenic potential deserves further assessment.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document