scholarly journals A Turn-On Detection of DNA Sequences by Means of Fluorescence of DNA-Templated Silver Nanoclusters via Unique Interactions of a Hydrated Ionic Liquid

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2889 ◽  
Author(s):  
Ye Teng ◽  
Hisae Tateishi-Karimata ◽  
Takaaki Tsuruoka ◽  
Naoki Sugimoto

Nucleic acid stability and structure, which are crucial to the properties of fluorescent DNA-templated silver nanoclusters (DNA-Ag NCs), significantly change in ionic liquids. In this work, our purpose was to study DNA-Ag NCs in a buffer containing the hydrated ionic liquid of choline dihydrogen phosphate (choline dhp) to improve fluorescence for application in DNA detection. Due to the stabilisation of an i-motif structure by the choline cation, a unique fluorescence emission—that was not seen in an aqueous buffer—was observed in choline dhp and remained stable for more than 30 days. A DNA-Ag NCs probe was designed to have greater fluorescence intensity in choline dhp in the presence of a target DNA. A turn-on sensing platform in choline dhp was built for the detection of the BRCA1 gene, which is related to familial breast and ovarian cancers. This platform showed better sensitivity and selectivity in distinguishing a target sequence from a mutant sequence in choline dhp than in the aqueous buffer. Our study provides new evidence regarding the effects of structure on properties of fluorescent DNA-Ag NCs and expands the applications of fluorescent DNA-Ag NCs in an ionic liquid because of improved sensitivity and selectivity.

2015 ◽  
Vol 7 (19) ◽  
pp. 7989-7994 ◽  
Author(s):  
Hui-Xia Han ◽  
Xue Tian ◽  
Xiang-Juan Kong ◽  
Ru-Qin Yu ◽  
Xia Chu

A label-free and turn-on strategy for H2O2 and glucose detection based on the cleavage of ssDNA by ˙OH and the fluorescence enhancement effect when guanine-rich (G-rich) DNA sequences are in proximity to DNA–silver nanoclusters (DNA–Ag NCs).


2014 ◽  
Vol 6 (15) ◽  
pp. 6082-6087 ◽  
Author(s):  
Hui Ma ◽  
Wei Wei ◽  
Qian Lu ◽  
Zhixin Zhou ◽  
Henan Li ◽  
...  

A label-free DNA biosensor with high sensitivity and selectivity is constructed by using DNA–Ag NCs and Exo III-catalyzed target recycling amplification.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yunpeng Shang ◽  
Hui Gao ◽  
Lei Li ◽  
Chaoqun Ma ◽  
Jiao Gu ◽  
...  

Herein, we prepared the L-histidine- (His-) protected silver nanoclusters (Ag NCs) by the microwave synthesis method. The synthesis process was rapid, facile, and environmentally friendly. Under 356 nm excitation, the as-prepared Ag NCs exhibited the blue fluorescence, and the fluorescence emission peak was located at 440 nm. The Ag NCs could successfully detect trace copper (Cu2+) ions in the aqueous solution and the limit of detection (LOD) was as low as 0.6 pM. Interestingly, the Ag NCs showed a different pH-dependent selectivity for both Cu2+ and iron (Fe3+) ions with no responses to other heavy metal ions. Furthermore, the as-fabricated fluorescent sensing system was utilized to detect glutathione (GSH, the LOD was 0.8 nM) by using the “switch-on” fluorescence recovery of Ag NCs through adding glutathione (GSH) to the Cu2+-Ag NCs solution.


RSC Advances ◽  
2018 ◽  
Vol 8 (45) ◽  
pp. 25611-25616 ◽  
Author(s):  
Dan Han ◽  
Chunying Wei

“Turn-on” fluorescence detection for p53 gene based on target-triggered opening of hairpin DNA probe and synthesis of DNA-Ag NCs.


RSC Advances ◽  
2017 ◽  
Vol 7 (89) ◽  
pp. 56289-56295 ◽  
Author(s):  
Baozhu Zhang ◽  
Chunying Wei

A novel turn-on fluorescent biosensor based on C–Hg2+-aptamer-1-DNA-templated silver nanoclusters (Ag NCs) was developed for the quantitative analysis of Hg2+.


2008 ◽  
Vol 1134 ◽  
Author(s):  
Yusong Wang ◽  
Bin Liu

AbstractDetection of mercury with high sensitivity and selectivity constitutes a significant research concern. Here, we report an amplified fluorescence turn-on assay for mercury(II) with an improved performance. This sensing system takes advantage of optically amplifying fluorescent conjugated polyfluorene derivatives and DNA immobilized silica nanospheres (NSs) in addition to the specific thymine- mercury(II)-thymine(T- Hg2+-T) interaction. The employment of ion-specific T- Hg2+-T coordination increases the melting temperature (Tm) of the double-stranded DNA (dsDNA) on the hybridized NS surface. After thermal washing at 45 °C, the Hg2+ treated sample (dsDNA-NS) was effectively differentiated from that treated with nonspecific ions through monitoring fluorescence emission of fluorescein (Fl) labeled target DNA remained on the NS surface. Finally, a cationic conjugated polyfluorene derivative (CCP) was introduced to electrostatically associate with the DNA molecules on the NS surface, resulting in an amplified Fl signal via fluorescence resonance energy transfer (FRET) from the CCP to the dye molecule. In comparison with the use of Fl alone as a signal reporter, the presence of CCP significantly enhances the detection fluorescence intensity, reduces false-positive signal, and improves the detection selectivity for mercury(II). Further improvement in the probe design could yield more efficient metal ion sensors, which have the potential to be operated at room temperature and for the detection of other metal ions besides mercury(II).


2015 ◽  
Vol 51 (37) ◽  
pp. 7958-7961 ◽  
Author(s):  
Ya Wang ◽  
Qianqian Sun ◽  
Linling Zhu ◽  
Junying Zhang ◽  
Fengyang Wang ◽  
...  

A label-free and turn-on strategy based on a triplex molecular beacon for fluorescence melamine recognition with the signaling of Ag NCs was developed.


RSC Advances ◽  
2020 ◽  
Vol 10 (58) ◽  
pp. 35374-35380
Author(s):  
Baozhu Zhang ◽  
Chunying Wei

A highly sensitive thrombin aptasensor was constructed based on the alteration of the aptamer conformation induced by the target recognition and the turn-on fluorescence due to the proximity of two darkish DNA-templated copper/silver nanoclusters (DNA-Cu/Ag NCs).


2020 ◽  
Vol 18 (1) ◽  
pp. 1020-1029
Author(s):  
Shinkichi Nomura ◽  
Yoshiharu Ito ◽  
Shigehiko Takegami ◽  
Tatsuya Kitade

AbstractAlkyl methanesulfonates are genotoxic impurities that should be limited to an intake of not more than 1.5 µg/day, as regulated by the International Council for Harmonization guideline M7. We herein report a trace analysis of methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), and isopropyl methanesulfonate (IPMS) in the delgocitinib drug substance using liquid–liquid extraction, with an ionic liquid as the sample-solving medium, and direct injection gas chromatography detected with a flame-ionization detector. The proposed method takes advantage of the fine solubility of ionic liquids toward the drug substance, the good extraction efficiency of alkyl methanesulfonates in liquid–liquid extraction using the Chem Elut cartridge with low-polar organic solvents, and the ability of alkyl methanesulfonates to concentrate in minimum amounts of organic solvent, resulting in excellent sensitivity and selectivity. Specifically, for the preparation of the sample solution, a mixture of 1-butyl-3-methylimidazolium chloride, water, and acetonitrile was used as the sample-solving media, extracted with diethyl ether, and the eluent was concentrated to 1 mL. The method showed good linearity, accuracy, and precision from 1 to 5 ppm, and the limits of detection of MMS, EMS, and IPMS were 0.1, 0.05, and 0.05 ppm, respectively.


Sign in / Sign up

Export Citation Format

Share Document