scholarly journals Determination of Kanamycin by High Performance Liquid Chromatography

Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1902 ◽  
Author(s):  
Xingping Zhang ◽  
Jiujun Wang ◽  
Qinghua Wu ◽  
Li Li ◽  
Yun Wang ◽  
...  

Kanamycin is an aminoglycoside antibiotic widely used in treating animal diseases caused by Gram-negative and Gram-positive infections. Kanamycin has a relatively narrow therapeutic index, and can accumulate in the human body through the food chain. The abuse of kanamycin can have serious side-effects. Therefore, it was necessary to develop a sensitive and selective analysis method to detect kanamycin residue in food to ensure public health. There are many analytical methods to determine kanamycin concentration, among which high performance liquid chromatography (HPLC) is a common and practical tool. This paper presents a review of the application of HPLC analysis of kanamycin in different sample matrices. The different detectors coupled with HPLC, including Ultraviolet (UV)/Fluorescence, Evaporative Light Scattering Detector (ELSD)/Pulsed Electrochemical Detection (PED), and Mass Spectrometry, are discussed. Meanwhile, the strengths and weaknesses of each method are compared. The pre-treatment methods of food samples, including protein precipitation, liquid-liquid extraction (LLE), and solid-phase extraction (SPE) are also summarized in this paper.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Qianchun Zhang ◽  
Yulan Liu ◽  
Xingyi Wang ◽  
Huimin Li ◽  
Junyu Chen

A novel method was proposed for the determination of five benzimidazoles (oxfendazole, mebendazole, flubendazole, albendazole, and fenbendazole) using magnetic graphene (G-Fe3O4). G-Fe3O4 was synthesized via in situ chemical coprecipitation. The properties of G-Fe3O4 were characterized by various instrumental methods. G-Fe3O4 exhibited a great adsorption ability and good stability towards analytes. Various experimental parameters that might affect the extraction efficiency such as the amount of G-Fe3O4, extraction solvent, extraction time, and desorption conditions were evaluated. Under the optimized conditions, a method based on G-Fe3O4 magnetic solid-phase extraction coupled with high-performance liquid chromatography was developed. A good linear response was observed in the concentration range of 0.100–100 μg/L for the five benzimidazoles, with correlation coefficients ranging from 0.9966 to 0.9998. The limits of detection (S/N=3) of the method were between 17.2 and 32.3 ng/L. Trace benzimidazoles in chicken, chicken blood, and chicken liver samples were determined and the concentrations of oxfendazole, mebendazole, flubendazole, and fenbendazole in these samples were 13.0–20.2, 1.62–4.64, 1.94–6.42, and 0.292–1.04 ng/g, respectively. The recovery ranged from 83.0% to 115%, and the relative standard deviations were less than 7.9%. The proposed method was sensitive, reliable, and convenient for the analysis of trace benzimidazoles in food samples.


Sign in / Sign up

Export Citation Format

Share Document