scholarly journals Trimethyl Chitosan/Siloxane-Hybrid Coated Fe3O4 Nanoparticles for the Uptake of Sulfamethoxazole from Water

Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1958 ◽  
Author(s):  
Sofia F. Soares ◽  
Tiago Fernandes ◽  
Tito Trindade ◽  
Ana L. Daniel-da-Silva

The presence of several organic contaminants in the environment and aquatic compartments has been a matter of great concern in the recent years. To tackle this problem, new sustainable and cost-effective technologies are needed. Herein we describe magnetic biosorbents prepared from trimethyl chitosan (TMC), which is a quaternary chitosan scarcely studied for environmental applications. Core@shell particles comprising a core of magnetite (Fe3O4) coated with TMC/siloxane hybrid shells (Fe3O4@SiO2/SiTMC) were successfully prepared using a simple one-step coating procedure. Adsorption tests were conducted to investigate the potential of the coated particles for the magnetically assisted removal of the antibiotic sulfamethoxazole (SMX) from aqueous solutions. It was found that TMC-based particles provide higher SMX adsorption capacity than the counterparts prepared using pristine chitosan. Therefore, the type of chemical modification introduced in the chitosan type precursors used in the surface coatings has a dominant effect on the sorption efficiency of the respective final magnetic nanosorbents.

2020 ◽  
Vol 861 ◽  
pp. 309-314
Author(s):  
Jian Huang ◽  
Zhe Lei ◽  
Qian Zhang ◽  
Mei Juan Su ◽  
Liang Liu

Highly active Al-based Ag dendrites SERS plasmonic substrates have been rapidly synthesized by the one-step galvanic displacement reaction without the use of any surfactants and templates. The as-prepared SERS substrates were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. XRD measurements confirmed the metallic nature of the formed Ag dendrites. None of the organic additives were used in the synthesis process, which ensures the substrates surfaces are completely clean and avoiding the introduction of organic contaminants. The innovative rough bionic substrates yield a final silver dendritic structure that offers large specific surface area and high-density hotspots. Using malachite green as a model target, the Al-based Ag dendrites SERS substrates exhibited acceptable reproducibility (relative standard deviation of 23.8%) and high enhancement capacities (pushed the detection limit down to 10 pM). Importantly, these Ag dendrites could potentially be employed as highly active and cost effective flexible SERS sensors for label-free ultrasensitive detection of biomolecules.


2020 ◽  
Vol 16 (6) ◽  
pp. 795-799
Author(s):  
YongJin Li

Background: A simple, fast and economic analytical method for the determination of ethanol is important for clinical, biological, forensic and physico-legal purposes. Methods: Ni2+-NTA resin was used as an immobilization matrix for the simple one-step purification/ immobilization of his6-tagged ADH. Different alcohols with a concentration range of 0.5-50% V/V, namely methanol, ethanol and propanol were measured using prepared ADH enzyme thermistor. The ethanol content of Tsingtao beer was tested as a real sample containing alcohol. Reproducibility and stability of prepared ADH enzyme thermistor were also investigated by repeated measurements. Results: In comparison to the controlled pore glass (a common used support for the immobilization of enzyme) used in thermal biosensor, the use of Ni2+-NTA resin not only led to simple one-step purification/ immobilization by his6-tagged ADH binding to Ni2+-NTA resin, but also made the immobilizing supports reusable. The prepared biosensor can be used to determine ethanol and methanol by the calorimetric measurement. A linear range of 1 -32% (V/V) and 2-20% (V/V) was observed for ethanol and methanol, respectively. The detection limits were 0.3% (V/V) and 1% (V/V) for ethanol and methanol, respectively. The tested ethanol concentration of Tsingtao beer was 4.5% V/V, which is comparable with the labeled alcohol by volume (ABV) 4.80%. Conclusion: Ni2+-NTA resin, as an immobilization matrix in ET sensor, provides a simple one-step purification/immobilization for His6-tagged recombinase and a reusable immobilization matrix. The prepared biosensor exhibits good repeatability and stability. Such a new biosensor shows great promise for rapid, simple, and cost-effective analysis of ethanol and methanol, both in qualitative and in quantitative tests.


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 13
Author(s):  
Benzion Amoyav ◽  
Yoel Goldstein ◽  
Eliana Steinberg ◽  
Ofra Benny

Microfluidics research for various applications, including drug delivery, cell-based assays and biomedical research has grown exponentially. Despite this technology’s enormous potential, drawbacks include the need for multistep fabrication, typically with lithography. We present a one-step fabrication process of a microfluidic chip for drug dissolution assays based on a 3D printing technology. Doxorubicin porous and non-porous microspheres, with a mean diameter of 250µm, were fabricated using a conventional “batch” or microfluidic method, based on an optimized solid-in-oil-in-water protocol. Microspheres fabricated with microfluidics system exhibited higher encapsulation efficiency and drug content as compared with batch formulations. We determined drug release profiles of microspheres in varying pH conditions using two distinct dissolution devices that differed in their mechanical barrier structures. The release profile of the “V” shape barrier was similar to that of the dialysis sac test and differed from the “basket” barrier design. Importantly, a cytotoxicity test confirmed biocompatibility of the printed resin. Finally, the chip exhibited high durability and stability, enabling multiple recycling sessions. We show how the combination of microfluidics and 3D printing can reduce costs and time, providing an efficient platform for particle production while offering a feasible cost-effective alternative to clean-room facility polydimethylsiloxane-based chip microfabrication.


2020 ◽  
Vol 7 ◽  
Author(s):  
Jun Ji ◽  
Qinxi Chen ◽  
Zhengli Yu ◽  
Xin Xu ◽  
Xinhao Mu ◽  
...  

In this study, a one-step isothermal method combining polymerase spiral reaction (PSR) with reverse transcription (RT-PSR) was established for rapid and specific detection of novel astroviruses causing fatal gout in goslings (N-GoAstV). The one-step RT-PSR was accomplished at the optimal temperature of 62°C and time of 40 min and used primers simply designed as conventional PCR primers, and the results of detection were visible to the naked eye. The detection limit of PSR was above 34.7 copies/μL at a 95% probability level according to probit regression analysis. The assay specifically detected N-GoAstV, and no other reference viruses were detected. These results suggest that the newly established RT-PSR assay could, in one step, accomplish reverse-transcription, amplification, and result determination providing a visible, convenient, rapid, and cost-effective test that can be carried out onsite, in order to ensure timely quarantine of N-GoAstV-infected birds, leading to effective disease control.


This research was conducted to produce the magnetite (Fe3O4 ) nanoparticles extracted from the industrial millscale waste. Then, the micron size samples were extracted and grounded on the high energy ball milling (HEBM) at various milling time for 4, 8, 12, 16 and 20 h. The formation of nanosized single-phase hexagonal spinel has been observed with XRD analysis as early as 4 h milling time. The FTIR transmission spectrum shows the appearance of a Fe-O functional group for each sample. HRTEM images showed that all the samples had a small particle size of 5-20 nm with uniform distribution. The specific surface area of the 5 adsorbents increased after the 8 h milling time and it showed reduction after that. The magnetite adsorbents then utilized the adsorbent in Cadmium ions removal of the aqueous solution. Fe3O4 with 8 h milling time was able to remove 9.81 mg of cadmium ions with 1 g of adsorbents consume. The removal of the cadmium ions detected related to the particles size, surface areas and saturation magnetization. This research successfully revealed that the higher saturation magnetization contributed to high removal percentages in cadmium ions of aqueous solutions. Fe3O4 extraction from mill scales waste is cost-effective, the process is eco-friendly and thus, potentially to be applied for wastewater treatment.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 860
Author(s):  
Jong In Jang ◽  
Hae-Chang Jeong

We have developed a very useful and cost-effective liquid crystal (LC) alignment layer of brush-coated TiO2 that is solution-processable for twisted nematic (TN) LC cells. TiO2 was prepared via the sol-gel method. The TiO2 solution was brush-coated on the substrate, followed by an annealing process. During the brush-coating process, a retracting force is generated on the deposited TiO solutions along the coating direction. The annealing process hardens the TiO2 and generates shearing stress arising from the retracting force along the brush-coating direction. The shearing stress created highly oriented nano/microstructure and uniformly aligned LCs with a stable pretilt angle of 0.6°. TN mode LC cells based on brush-coated TiO2 exhibited a performance of 12.5 ms of response and a threshold voltage of 1.8 V. Our brush-coated TiO2 incorporates two steps of the film deposition and alignment process into one step.


2007 ◽  
Vol 18 (11) ◽  
pp. 115610 ◽  
Author(s):  
Zhijuan Wang ◽  
Junhua Yuan ◽  
Dongxue Han ◽  
Li Niu ◽  
Ari Ivaska
Keyword(s):  
One Step ◽  

Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 656 ◽  
Author(s):  
Hee Hwang ◽  
Younghoon Lee ◽  
Choongyeop Lee ◽  
Youngsuk Nam ◽  
Jinhyoung Park ◽  
...  

The oxidation of metal microparticles (MPs) in a polymer film yields a mesoporous highly-deformable composite polymer for enhancing performance and creating a gapless structure of triboelectric nanogenerators (TENGs). This is a one-step scalable synthesis for developing large-scale, cost-effective, and light-weight mesoporous polymer composites. We demonstrate mesoporous aluminum oxide (Al2O3) polydimethylsiloxane (PDMS) composites with a nano-flake structure on the surface of Al2O3 MPs in pores. The porosity of mesoporous Al2O3-PDMS films reaches 71.35% as the concentration of Al MPs increases to 15%. As a result, the film capacitance is enhanced 1.8 times, and TENG output performance is 6.67-times greater at 33.3 kPa and 4 Hz. The pressure sensitivity of 6.71 V/kPa and 0.18 μA/kPa is determined under the pressure range of 5.5–33.3 kPa. Based on these structures, we apply mesoporous Al2O3-PDMS film to a gapless TENG structure and obtain a linear pressure sensitivity of 1.00 V/kPa and 0.02 μA/kPa, respectively. Finally, we demonstrate self-powered safety cushion sensors for monitoring human sitting position by using gapless TENGs, which are developed with a large-scale and highly-deformable mesoporous Al2O3-PDMS film with dimensions of 6 × 5 pixels (33 × 27 cm2).


Sign in / Sign up

Export Citation Format

Share Document