scholarly journals Distinctive Formation of Volatile Compounds in Fermented Rice Inoculated by Different Molds, Yeasts, and Lactic Acid Bacteria

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2123 ◽  
Author(s):  
Min Kyung Park ◽  
Young-Suk Kim

Rice has been fermented to enhance its application in some foods. Although various microbes are involved in rice fermentation, their roles in the formation of volatile compounds, which are important to the characteristics of fermented rice, are not clear. In this study, diverse approaches, such as partial least squares-discriminant analysis (PLS-DA), metabolic pathway-based volatile compound formations, and correlation analysis between volatile compounds and microbes were applied to compare metabolic characteristics according to each microbe and determine microbe-specific metabolites in fermented rice inoculated by molds, yeasts, and lactic acid bacteria. Metabolic changes were relatively more activated in fermented rice inoculated by molds compared to other microbes. Volatile compound profiles were significantly changed depending on each microbe as well as the group of microbes. Regarding some metabolic pathways, such as carbohydrates, amino acids, and fatty acids, it could be observed that certain formation pathways of volatile compounds were closely linked with the type of microbes. Also, some volatile compounds were strongly correlated to specific microbes; for example, branched-chain volatiles were closely link to Aspergillus oryzae, while Lactobacillus plantarum had strong relationship with acetic acid in fermented rice. This study can provide an insight into the effects of fermentative microbes on the formation of volatile compounds in rice fermentation.

2019 ◽  
Vol 57 (5) ◽  
pp. 544
Author(s):  
Le Thanh Ha ◽  
Nguyen Nam Trinh ◽  
Le Thi My Chau ◽  
Nguyen Thi Minh Tu

The intracellular aminopeptidase activities and volatile compound profile of isolated halophilic lactic acid bacteria Tetragenococcus halophilus was investigated. Tetragenococcus halophilus CH2-4 and CH6-2 exhibited highest aminopeptidase activities 2.2 U/mL toward Glutamic-pNA. Meanwhile T. halophilus CH6-1 and V7-2 showed highest aminopeptidase activities 1.4 U/mL toward Leucine-pNA.  The total 19 volatile compounds, including esters, alcohols, ketones, phenols, hydrocarbons and sulfur containing compounds were detected in fish broth inoculated with T. halophilus.T. halophilus CH6-2 produced most volatile compounds, 10/19 detected ones in this study.  


2017 ◽  
Vol 59 ◽  
pp. 141-149 ◽  
Author(s):  
Ratchadaporn Kaprasob ◽  
Orapin Kerdchoechuen ◽  
Natta Laohakunjit ◽  
Dipayan Sarkar ◽  
Kalidas Shetty

2015 ◽  
Vol 57 (2) ◽  
pp. 399-406 ◽  
Author(s):  
Muhammad Inam Afzal ◽  
Citlalli Celeste González Ariceaga ◽  
Kenza-Amel Boulahya ◽  
Muriel Jacquot ◽  
Stéphane Delaunay ◽  
...  

2001 ◽  
Vol 90 (6) ◽  
pp. 928-942 ◽  
Author(s):  
G. Mauriello ◽  
L. Moio ◽  
G. Moschetti ◽  
P. Piombino ◽  
F. Addeo ◽  
...  

2005 ◽  
Vol 187 (15) ◽  
pp. 5146-5155 ◽  
Author(s):  
Mauricio G. Martin ◽  
Christian Magni ◽  
Diego de Mendoza ◽  
Paloma López

ABSTRACT A large variety of lactic acid bacteria (LAB) can utilize citrate under fermentative conditions. Although much information concerning the metabolic pathways leading to citrate utilization by LAB has been gathered, the mechanisms regulating these pathways are obscure. In Weissella paramesenteroides (formerly called Leuconostoc paramesenteroides), transcription of the citMDEFCGRP citrate operon and the upstream divergent gene citI is induced by the presence of citrate in the medium. Although genetic experiments have suggested that CitI is a transcriptional activator whose activity can be modulated in response to citrate availability, specific details of the interaction between CitI and DNA remained unknown. In this study, we show that CitI recognizes two A+T-rich operator sites located between citI and citM and that the DNA-binding affinity of CitI is increased by citrate. Subsequently, this citrate signal propagation leads to the activation of the cit operon through an enhanced recruitment of RNA polymerase to its promoters. Our results indicate that the control of CitI by the cellular pools of citrate provides a mechanism for sensing the availability of citrate and adjusting the expression of the cit operon accordingly. In addition, this is the first reported example of a transcription factor directly functioning as a citrate-activated switch allowing the cell to optimize the generation of metabolic energy.


Author(s):  
Fanny Canon ◽  
Marie-Bernadette Maillard ◽  
Gwénaële Henry ◽  
Anne Thierry ◽  
Valérie Gagnaire

Nutritional dependencies, especially those regarding nitrogen sources, govern numerous microbial positive interactions. As for lactic acid bacteria (LAB), responsible for the sanitary, organoleptic, and health properties of most fermented products, such positive interactions have previously been studied between yogurt bacteria. However, they have never been exploited to create artificial co-cultures of LAB that would not necessarily coexist naturally, i.e from different origins. The objective of this study was to promote LAB positive interactions, based on nitrogen dependencies in co-cultures, and to investigate how these interactions affect some functional outputs, e.g. acidification rates, carbohydrate consumption, and volatile compound production. The strategy was to exploit both proteolytic activities and amino acid auxotrophies of LAB. A chemically defined medium was thus developed to specifically allow the growth of six strains used, three proteolytic and three non-proteolytic. Each of the proteolytic strains, Enterococcus faecalis CIRM-BIA2412, Lactococcus lactis NCDO2125, and CIRM-BIA244, was co-cultured with each one of the non-proteolytic LAB strains: L. lactis NCDO2111, Lactiplantibacillus plantarum CIRM-BIA465 and CIRM-BIA1524. Bacterial growth was monitored using compartmented chambers to compare growth in mono- and co-cultures. Acidification, carbohydrate consumption and volatile compound production was evaluated in direct co-cultures. Each proteolytic strain induced different types of interactions: either strongly positive, weakly positive, or no interactions, with E. faecalis CIRM-BIA2412, L. lactis NCDO2125 and L. lactis CIRM-BIA244, respectively. Strong interactions were associated with higher concentrations in tryptophan, valine, phenylalanine, leucine, isoleucine, and peptides. They led to faster acidification rates, lower pH, higher raffinose utilization and concentrations in five volatile compounds. Importance: Lactic acid bacteria (LAB) interactions are often studied in association with yeasts or propionibacteria in various fermented food products and the mechanisms underlying their interactions are being quite well characterized. Concerning interactions between LAB, they have mainly been investigated to test antagonistic interactions. Understanding how they can positively interact could be useful in multiple food-related fields: production of fermented food products with enhanced functional properties or fermentation of new food matrices. This study investigates the exploitation of the proteolytic activity of LAB strains to promote positive interactions between proteolytic and non-proteolytic strains. The results suggest that proteolytic LAB do not equally stimulate non-proteolytic LAB and that the stronger the interactions between LAB are, the more functional outputs we can expect. Thus, this study gives insight into how to create new associations of LAB strains and to guaranty their positive interactions.


2021 ◽  
Vol 11 (8) ◽  
pp. 368
Author(s):  
Duangporn Kantachote ◽  
Worrapanit Chansuwan ◽  
Chakree Thongraung ◽  
Nualpun Sirinuipong

Background: Lactic acid bacteria-based fermentation clearly contributes to improving nutritional value and exhibits various health benefits. The demand for non-dairy functional beverages, such as fruit beverages, as an alternative vehicle for probiotics is increasing because of lifestyle choices or health conditions. Therefore, the objective of this study was to evaluate the anti-Salmonella potential and antioxidant activity of fermented fruit-based juice by lactic acid bacteria and its biotransformation.   Methods: In this study, to produce the fermented fruit-based juice (FFJ), the mixed fruit juice (MFJ) was fermented by Lactobacillus plantarum TISTR 1465 and Lactobacillus salivarius TIST 1112 for 72 hrs. The potential function, anti-Salmonella by the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and antibiofilm activities of FFJ against Salmonella Typhi DMST 22842 was evaluated. The antioxidative capacity was determined by DPPH and FRAP assay. The active volatile compounds were identified by GC-MS. Results: A novel functional FFJ showed excellent growth capacity with 8 log CFU/mL of probiotics Lactobacillus plantarum TISTR 1465 and Lactobacillus salivarius TIST 1112. MIC and MBC values in the FFJ were 500 mg/mL after 72 hrs of fermentation. After 48hrs of fermentation, biofilm formation inhibition was significant (p < 0.05) with 95.27% ± 2.26% inhibition; biofilm metabolic activity inhibition was also significant (p < 0.05) with 89.25% ± 0.18% inhibition. The volatile compounds present in the FFJ were fruity flavors and aromas, most of have antimicrobial and antioxidant properties.  These compounds comprise various classes, including alcohols, organic acid, ester, and ketone. In both LAB fermentations, the most abundant volatile alcohol was isoamyl alcohol, followed by 1-hexanol and 2,3-Butanolone; acetic acid was only present in L. plantarum fermentation. In addition, DPPH radical scavenging and FRAP assay showed the mixed fruit juice had dramatically increased antioxidant activity after 48 hrs of fermentation.Conclusion: The findings of this work indicate that the obtained fermented fruit-based juice (FFJ) showed excellent growth capacity of probiotics, Lactobacillus plantarum TISTR 1465 and Lactobacillus salivarius TIST 1112, and produced the volatile compounds from biotransformation. This not only improved fruit flavor and aroma, but also influenced antibacterial activity against the pathogen Salmonella Typhi DMST 22842, as well as increased antioxidant activity. Therefore, the FFJ could be a novel functional fermented drink for vegan and non-diary consumption.Keywords: Lactic acid bacteria, Probiotics, Biotransformation, Non-dairy functional beverage, Anti-Salmonella


Author(s):  
Yaqi Wang ◽  
Jiangtao Wu ◽  
Mengxin Lv ◽  
Zhen Shao ◽  
Meluleki Hungwe ◽  
...  

Lactic acid bacteria are a kind of microorganisms that can ferment carbohydrates to produce lactic acid, and are currently widely used in the fermented food industry. In recent years, with the excellent role of lactic acid bacteria in the food industry and probiotic functions, their microbial metabolic characteristics have also attracted more attention. Lactic acid bacteria can decompose macromolecular substances in food, including degradation of indigestible polysaccharides and transformation of undesirable flavor substances. Meanwhile, they can also produce a variety of products including short-chain fatty acids, amines, bacteriocins, vitamins and exopolysaccharides during metabolism. Based on the above-mentioned metabolic characteristics, lactic acid bacteria have shown a variety of expanded applications in the food industry. On the one hand, they are used to improve the flavor of fermented foods, increase the nutrition of foods, reduce harmful substances, increase shelf life, and so on. On the other hand, they can be used as probiotics to promote health in the body. This article reviews and prospects the important metabolites in the expanded application of lactic acid bacteria from the perspective of bioengineering and biotechnology.


Sign in / Sign up

Export Citation Format

Share Document