scholarly journals Whole Slide Imaging for High-Throughput Sensing Antibiotic Resistance at Single-Bacterium Level and Its Application to Rapid Antibiotic Susceptibility Testing

Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2441 ◽  
Author(s):  
Donghui Song ◽  
Haomin Liu ◽  
Huayi Ji ◽  
Yu Lei

Since conventional culture-based antibiotic susceptibility testing (AST) methods are too time-consuming (typically 24–72 h), rapid AST is urgently needed for preventing the increasing emergence and spread of antibiotic resistant infections. Although several phenotypic antibiotic resistance sensing modalities are able to reduce the AST time to a few hours or less, concerning the biological heterogeneity, their accuracy or limit of detection are limited by low throughput. Here, we present a rapid AST method based on whole slide imaging (WSI)-enabled high-throughput sensing antibiotic resistance at single-bacterium level. The time for determining the minimum inhibitory concentration (MIC) was theoretically shortest, which ensures that the growth of each individual cell present in a large population is inhibited. As a demonstration, our technique was able to sense the growth of at least several thousand bacteria at single-cell level. Reliable MIC of Enterobacter cloacae against gentamicin was obtained within 1 h, while the gold standard broth dilution method required at least 16 h for the same result. In addition, the application of our method prevails over other imaging-based AST approaches in allowing rapid and accurate determination of antibiotic susceptibility for phenotypically heterogeneous samples, in which the number of antibiotic resistant cells was negligible compared to that of the susceptible cells. Hence, our method shows great promise for both rapid AST determination and point-of-care testing of complex clinical bacteria isolates.

2021 ◽  
Author(s):  
Mandeep Chhajer Jain ◽  
Anupama Pillai ◽  
Rakesh Narang ◽  
Mohammad Zarifi

Abstract Infection diagnosis and antibiotic susceptibility testing (AST) are pertinent clinical microbiology practices that are in dire need of improvement, as current standards are not able to keep up with the mutations and resistance development of certain bacterial strains. This paper presents a novel way to conduct AST which hybridizes disk diffusion AST with microwave resonators for rapid, contactless, non-invasive and high-throughput testing. This work uses Escherichia coli (E. coli) cultured on solid agar and places bacteria samples on a microwave split-ring resonator along with antibiotic disks (erythromycin) of various doses to demonstrate the viability of this sensing method in a clinical microbiological setting. The microwave resonator, operating at a 1.76 GHz resonant frequency, boasted a 5 mm2 sensitive sensing region. A one-port sensor was designed and optimized for detecting dielectric property variations of lossy dielectric materials accurately. This sensor was calibrated to detect uninhibited growth of the bacteria at 0.005 dB/hr, with a maximum change of 0.07 dB over the course of 15 hrs. The transient resonant amplitude change was subsequently dampened for each increasing dosage of antibiotic tested, with 45 µg of erythromycin showing negligible change indicating complete inhibited growth. This AST sensor demonstrated decisive results of antibiotic susceptibility in under 6 hours and shows great promise to further automate the intricate workflow of AST in clinical settings, while providing rapid, sensitive, non-invasive and high-throughput detection capabilities.


2020 ◽  
Vol 41 (S1) ◽  
pp. s42-s43
Author(s):  
Kimberley Sukhum ◽  
Candice Cass ◽  
Meghan Wallace ◽  
Caitlin Johnson ◽  
Steven Sax ◽  
...  

Background: Healthcare-associated infections caused by antibiotic-resistant organisms (AROs) are a major cause of significant morbidity and mortality. To create and optimize infection prevention strategies, it is crucial to delineate the role of the environment and clinical infections. Methods: Over a 14-month period, we collected environmental samples, patient feces, and patient bloodstream infection (BSI) isolates in a newly built bone marrow transplant (BMT) intensive care unit (ICU). Samples were collected from 13 high-touch areas in the patient room and 4 communal areas. Samples were collected from the old BMT ICU, in the new BMT ICU before patients moved in, and for 1 year after patients moved in. Selective microbiologic culture was used to isolate AROs, and whole-genome sequencing (WGS) was used to determine clonality. Antibiotic susceptibility testing was performed using Kirby-Bauer disk diffusion assays. Using linear mixed modeling, we compared ARO recovery across time and sample area. Results: AROs were collected and cultured from environmental samples, patient feces, and BSI isolates (Fig. 1a). AROs were found both before and after a patient entered the ICU (Fig. 1b). Sink drains had significantly more AROs recovered per sample than any other surface area (P < .001) (Fig. 1c). The most common ARO isolates were Pseudomonas aeruginosa and Stenotrophomonas maltophila (Fig. 1d). The new BMT ICU had fewer AROs recovered per sample than the old BMT ICU (P < .001) and no increase in AROs recovered over the first year of opening (P > .05). Furthermore, there was no difference before versus after patients moved into the hospital (P > .05). Antibiotic susceptibility testing reveal that P. aeruginosa isolates recovered from the old ICU were resistant to more antibiotics than isolates recovered from the new ICU (Fig. 2a). ANI and clonal analyses of P. aeruginosa revealed a large cluster of clonal isolates (34 of 76) (Fig. 2b). This clonal group included isolates found before patients moved into the BMT ICU and patient blood isolates. Furthermore, this clonal group was initially found in only 1 room in the BMT ICU, and over 26 weeks, it was found in sink drains in all 6 rooms sampled (Fig. 2b). Conclusions: AROs are present before patients move into a new BMT ICU, and sink drains act as a reservoir for AROs over time. Furthermore, sink-drain P. aeruginosa isolates are clonally related to isolates found in patient BSIs. Overall, these results provide insight into ARO transmission dynamics in the hospital environment.Funding: Research reported in this publication was supported by the Washington University Institute of Clinical and Translational Sciences grant UL1TR002345 from the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official view of the NIH.Disclosures: None


Lab on a Chip ◽  
2015 ◽  
Vol 15 (13) ◽  
pp. 2799-2807 ◽  
Author(s):  
Justin D. Besant ◽  
Edward H. Sargent ◽  
Shana O. Kelley

Concentrating bacteria in nanoliter culture chambers enables rapid electrochemical antibiotic susceptibility testing on-chip.


Author(s):  
G. A. C. Ezeah ◽  
M. C. Ugwu ◽  
A. O. Ekundayo ◽  
O. F. Odo ◽  
O. C. Ike ◽  
...  

Vancomycin resistant enterococci (VRE) are a major medical concern globally. Their significantly greater prevalence and the ability to transfer resistance to vancomycin from other bacteria made them an object of interest and intense research. The isolates of Enterococcus sp. were subjected to antibiotic susceptibility testing before curing. The three Enterococcus species exhibited different antibiotic resistance profile. Pre-curing antibiotic resistance of nosocomial isolates compared with community acquired isolates revealed that high percentage of the nosocomial isolates were resistant to antibiotics compared to community isolate. Post-curing antibiograms of the isolates showed different resistant and susceptibility pattern. Also, DNA plasmid pre-curing and post curing analysis of the isolates showed different resistance pattern. Six of the 15 representative isolates selected on the basis of their high pre-curing antibiotic resistance for plasmid analysis with 0.8% agarose electrophoresis were positive for plasmid DNA. Four (4) of the positive isolates (E. faecium, E. faecium, E. faecalis, and E. avium) had plasmid fragment of greater than 1000 bp while two (2) of them (E. faecalis and E. faecalis) had fragments of between 100 and 500 bp. The remaining nine (9) had no plasmid DNA. The study revealed the pathogenicity factors demonstrated with the enterococcal isolates.


Diagnostics ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 49 ◽  
Author(s):  
Zeeshan A. Khan ◽  
Mohd F. Siddiqui ◽  
Seungkyung Park

Antibiotic susceptibility testing (AST) specifies effective antibiotic dosage and formulates a profile of empirical therapy for the proper management of an individual patient’s health against deadly infections. Therefore, rapid diagnostic plays a pivotal role in the treatment of bacterial infection. In this article, the authors review the socio-economic burden and emergence of antibiotic resistance. An overview of the phenotypic, genotypic, and emerging techniques for AST has been provided and discussed, highlighting the advantages and limitations of each. The historical perspective on conventional methods that have paved the way for modern AST like disk diffusion, Epsilometer test (Etest), and microdilution, is presented. Several emerging methods, such as microfluidic-based optical and electrochemical AST have been critically evaluated. Finally, the challenges related with AST and its outlook in the future are presented.


1995 ◽  
Vol 114 (1) ◽  
pp. 51-63 ◽  
Author(s):  
A. Dalsgaard ◽  
O. Serichantalergs ◽  
C. Pitarangsi ◽  
P. Echeverria

SUMMARYA collection of 64 clinical and environmentalVibrio choleraenon-O1 strains isolated in Asia and Peru were characterized by molecular methods and antibiotic susceptibility testing. All strains were resistant to at least 1 and 80% were resistant to two or more antibiotics. Several strains showed multiple antibiotic resistance (≥ three antibiotics). Plasmids most often of low molecular weight were found in 21/64 (33%) strains. The presence of plasmids did not correlate with antibiotic resistance or influence ribotype patterns. In colony hybridization studies 63/64 (98%)V. choleraenon-O1 strains were cholera toxin negative, whereas only strains recovered from patients were heat-stable enterotoxin positive. Forty-sevenBglI ribotypes were observed. No correlation was shown between ribotype and toxin gene status. Ribotype similarity was compared by cluster analysis and two main groups of 13 and 34 ribotypes was found. Ribotyping is apparently a useful epidemiological tool in investigations ofV. choleraenon-O1 infections.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 382
Author(s):  
Alyona Lavrinenko ◽  
Eugene Sheck ◽  
Svetlana Kolesnichenko ◽  
Ilya Azizov ◽  
Anar Turmukhambetova

The aim of this study was to determine the prevalence of A. baumannii antibiotic-resistant strains in Kazakhstan and to characterize genotypes related to epidemic “high-risk” clones. Two hundred and twenty four A. baumannii isolates from four cities of Kazakhstan in 2011–2019 were studied. Antibiotic susceptibility testing was performed by using broth microdilutions method according to EUCAST (v 11.0) recommendations. The presence of blaOXA-23-like, blaOXA-24/40-like,blaOXA-58-like,blaVIM,blaIMP, and blaNDM genes was determined by PCR. Genotyping was performed using high-throughput real-time PCR detection of 21 SNPs at 10 chromosomal loci used in existing MLST schemes. Resistance rates to imipenem, meropenem, amikacin, gentamicin, and ciprofloxacin were 81.3%, 78.6%, 79.9%, 65.2%, and 89.3%, respectively. No colistin resistant isolates were detected. The values of the MIC 50% and the MIC 90% of tigecycline were 0.125 mg/L, only four isolates (1.8%) had the ECOFF value >0.5 mg/L. The presence of acquired carbapenemase genes was found in 82.2% strains, including blaOXA-23-like (78.6%) or blaOXA-58-like (3.6%) genes. The spreading of carbapenem resistant A. baumannii strains in Kazakhstan was associated with epidemic “high-risk” clonal groups, predominantly, CG208(92)OXF/CG2PAS (80.8%) and less often CG231(109)OXF/CG1PAS (1.8%).


Sign in / Sign up

Export Citation Format

Share Document