scholarly journals Angelicae Gigantis Radix Regulates LPS-Induced Neuroinflammation in BV2 Microglia by Inhibiting NF-κB and MAPK Activity and Inducing Nrf-2 Activity

Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3755 ◽  
Author(s):  
You-Chang Oh ◽  
Yun Hee Jeong ◽  
Wei Li ◽  
Younghoon Go

Angelicae Gigantis Radix (AGR) has been widely used as a traditional medicine in East Asia. The effects of AGR on neuroinflammation have not previously been studied in detail. In the study presented here, we investigated the antineuroinflammatory properties of this herb and its mechanism of operation. The effects of AGR on neuroinflammation were studied by measuring the production of inflammatory factors and related enzymes, and analyzing the expression levels of proteins and genes involved its activity, in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that AGR pretreatment strongly inhibits the production of nitric oxide (NO), cytokines, and the enzymes inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2, and effectively induces the activation of heme oxygenase (HO)-1 and its regulator, nuclear factor erythroid 2-related factor 2 (Nrf-2). We also found that AGR effectively regulates the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK). We confirmed the antineuroinflammatory effects of the main constituents of the plant as identified by high-performance liquid chromatography (HPLC). Our results indicate that the neuroinflammation inhibitory activity of AGR occurs through inhibition of NF-κB and MAPK and activation of Nrf-2.

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Bo-Kyung Park ◽  
Young Hwa Kim ◽  
Yu Ri Kim ◽  
Jeong June Choi ◽  
Changsop Yang ◽  
...  

Microglia, the central nervous system’s innate immune cells, mediate neuroinflammation and are implicated in a variety of neuropathologies. The present study investigated the antineuroinflammatory and neuroprotective effects of Gyejibokryeong-hwan (GBH), a traditional Korean medicine, in lipopolysaccharide- (LPS-) stimulated murine BV2 microglia. BV2 cells were pretreated with GBH, fluoxetine (FXT), or amitriptyline (AMT) for 1 h and then stimulated with LPS (100 ng/mL). The expression levels of nitric oxide (NO), cytokines, and chemokines were determined by the Griess method, ELISA, or real-time PCR. Western blotting was used to measure various transcription factors and mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt activity. GBH significantly reduced the levels of NO, inducible nitric oxide synthase (iNOS), cyclooxygenase- (COX-) 2, tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, macrophage inhibitory protein- (MIP-) 1α, macrophage chemoattractant protein- (MCP-) 1, and IFN-γ inducible protein- (IP-) 10, regulated upon activation normal T cell expressed sequence (RANTES) in a dose-dependent manner. Expression of nuclear factor- (NF-) κB p65 was significantly decreased and phosphorylation of extracellular signal-regulated kinase (Erk), c-Jun NH2-terminal kinase (JNK), and PI3K/Akt by GBH, but not p38 MAPK, was decreased. Furthermore, production of anti-inflammatory cytokine IL-10 was increased and Heme oxygenase-1 (HO-1) was upregulated via the nuclear factor-E2-related factor 2 (NRF2)/cAMP response element-binding protein (CREB) pathway, collectively indicating the neuroprotective effects of GBH. We concluded that GBH may suppress neuroinflammatory responses by inhibiting NF-κB activation and upregulating the neuroprotective factor, HO-1. These results suggest that GBH has potential as anti-inflammatory and neuroprotective agents against microglia-mediated neuroinflammatory disorders.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1324
Author(s):  
Su-Lim Kim ◽  
Hack Sun Choi ◽  
Yu-Chan Ko ◽  
Bong-Sik Yun ◽  
Dong-Sun Lee

Inflammation is the first response of the immune system against bacterial pathogens. This study isolated and examined an antioxidant derived from Lactobacillus fermentation products using cultured media with 1% beet powder. The antioxidant activity of the beet culture media was significantly high. Antioxidant activity-guided purification and repeated sample isolation yielded an isolated compound, which was identified as 5-hydoxymaltol using nuclear magnetic resonance spectrometry. We examined the mechanism of its protective effect on lipopolysaccharide (LPS)-induced inflammation of macrophages. 5-Hydroxymaltol suppressed nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells. It also suppressed tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and inducible nitric oxide synthase (iNOS) in the messenger RNA and protein levels in LPS-treated RAW 264.7 cells. Moreover, it suppressed LPS-induced nuclear translocation of NF-κB (p65) and mitogen-activated protein kinase activation. Furthermore, 5-hydroxymaltol reduced LPS-induced reactive oxygen species (ROS) production as well as increased nuclear factor erythroid 2–related factor 2 and heme oxygenase 1 expression. Overall, this study found that 5-hydroxymaltol has anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophage cells based on its inhibition of pro-inflammatory cytokine production depending on the nuclear factor κB signaling pathway, inhibition of LPS-induced reactive oxygen species production, inhibition of LPS-induced mitogen-activated protein kinase induction, and induction of the nuclear factor erythroid 2–related factor 2/heme oxygenase 1 signaling pathway. Our data showed that 5-hydroxymaltol may be an effective compound for treating inflammation-mediated diseases.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 582 ◽  
Author(s):  
Jeremy C. Sprouse ◽  
Chethan Sampath ◽  
Pandu R. Gangula

Gastroparesis (Gp) is a multifactorial condition commonly observed in females and is characterized by delayed or rapid gastric emptying (GE). The role of ovarian hormones on GE in the pathogenesis of obesity induced type 2 diabetes mellitus (T2DM) is completely unknown. The aims of our study are to investigate whether supplementation of 17β-estradiol (E2) or progesterone (P4) restores impaired nuclear factor erythroid 2-related factor 2 (Nrf2, an oxidative stress-responsive transcription factor) and nitric oxide (NO)-mediated gastric motility in ovariectomized (OVX) mice consuming a high-fat diet (HFD, a model of T2DM). Groups of OVX+HFD mice were administered daily subcutaneous doses of either E2 or P4 for 12 weeks. The effects of E2 and P4 on body weight, metabolic homeostasis, solid GE, gastric antrum NO-mediated relaxation, total nitrite levels, neuronal nitric oxide synthase (nNOSα), and its cofactor expression levels were assessed in OVX+HFD mice. HFD exacerbated hyperglycemia and insulinemia while accelerating GE (p < 0.05) in OVX mice. Exogenous E2, but not P4, attenuated rapid gastric emptying and restored gastric nitrergic relaxation, total nitrite levels, nNOSα, and cofactor expression via normalizing Nrf2-Phase II enzymes, inflammatory response, and mitogen-activated protein kinase (MAPK) protein expression in OVX+HFD mice. We conclude that E2 is beneficial in normalizing metabolic homeostasis and gastric emptying in obese, diabetic OVX mice consuming a fat-rich diet.


2019 ◽  
Vol 20 (16) ◽  
pp. 4015 ◽  
Author(s):  
Yun Hee Jeong ◽  
Wei Li ◽  
Younghoon Go ◽  
You-Chang Oh

Microglial activation and the resulting neuroinflammation are associated with a variety of brain diseases, such as Alzheimer’s disease and Parkinson’s disease. Thus, the control of microglial activation is an important factor in the development of drugs that can treat or prevent inflammation-related neurodegenerative disorders. Atractylodis Rhizoma Alba (ARA) has been reported to exhibit antioxidant, gastroprotective, and anti-inflammatory effects. However, the effects of ARA ethanolic extract (ARAE) on microglia-mediated neuroinflammation have not been fully elucidated. In this work, we explored the anti-neuroinflammatory properties and underlying molecular mechanisms of ARAE in lipopolysaccharide (LPS)-stimulated microglial BV2 cells. Our results showed that ARAE significantly attenuates the production of nitric oxide (NO) and inflammatory cytokines induced by LPS. ARAE treatment also inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 without causing cytotoxicity. ARAE markedly attenuated the transcriptional activities of nuclear factor (NF)-κB and mitogen-activated protein kinases (MAPK) phosphorylation, and induced heme oxygenase (HO)-1 expression. High-performance liquid chromatography (HPLC) analysis showed that ARAE contains three main components—atractylenolide I, atractylenolide III, and atractylodin—all compounds that significantly inhibit the production of inflammatory factors. These findings indicate that ARAE may be a potential therapeutic agent for the treatment of inflammation-related neurodegenerative diseases.


2005 ◽  
Vol 33 (4) ◽  
pp. 701-704 ◽  
Author(s):  
K. Kashfi ◽  
B. Rigas

Nitric-oxide-donating aspirin (NO-ASA), consisting of ASA (aspirin) plus an -ONO2 moiety linked to it via a molecular spacer, is a new drug for cancer prevention. NO-ASA seems to overcome the low potency and toxicity of traditional ASA. The -ONO2 moiety is responsible for releasing NO, and it appears to be required for biological activity. In studies in vitro, NO-ASA inhibits the growth of colon, pancreatic, prostate, lung, skin, leukaemia and breast cancer cells, and is up to 6000-fold more potent than traditional ASA. This effect is owing to cell kinetics [inhibition of proliferation, induction of apoptosis (multiple criteria) and blocking the G1 to S cell-cycle transition] and cell signalling [inhibition of Wnt signalling (IC50=0.2 μM), inhibition of NF-κB (nuclear factor κB) activation (IC50=7.5 μM), inhibition of nitric oxide synthase-2 expression (IC50=48 μM), inhibition of MAPK (mitogen-activated protein kinase) signalling (IC50=10 μM) and induction of cyclo-oxygenase-2 at approx. 10 μM]. In studies in vivo, NO-ASA inhibits intestinal carcinogenesis in Min mice (tumour multiplicity was reduced by 59% after 3 weeks, with no effect in control animals and no side effects) and in the N-nitrosobis(2-oxopropyl)amine model of pancreatic cancer, where there was an 89% reduction in NO-ASA (3000 p.p.m. in the diet)-treated animals (P<0.001). There was no statistically significant effect by traditional ASA at equimolar doses. Our data indicate that NO-ASA is a highly promising agent for the prevention and/or treatment of cancer.


Sign in / Sign up

Export Citation Format

Share Document