scholarly journals Antineuroinflammatory and Neuroprotective Effects of Gyejibokryeong-Hwan in Lipopolysaccharide-Stimulated BV2 Microglia

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Bo-Kyung Park ◽  
Young Hwa Kim ◽  
Yu Ri Kim ◽  
Jeong June Choi ◽  
Changsop Yang ◽  
...  

Microglia, the central nervous system’s innate immune cells, mediate neuroinflammation and are implicated in a variety of neuropathologies. The present study investigated the antineuroinflammatory and neuroprotective effects of Gyejibokryeong-hwan (GBH), a traditional Korean medicine, in lipopolysaccharide- (LPS-) stimulated murine BV2 microglia. BV2 cells were pretreated with GBH, fluoxetine (FXT), or amitriptyline (AMT) for 1 h and then stimulated with LPS (100 ng/mL). The expression levels of nitric oxide (NO), cytokines, and chemokines were determined by the Griess method, ELISA, or real-time PCR. Western blotting was used to measure various transcription factors and mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt activity. GBH significantly reduced the levels of NO, inducible nitric oxide synthase (iNOS), cyclooxygenase- (COX-) 2, tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, macrophage inhibitory protein- (MIP-) 1α, macrophage chemoattractant protein- (MCP-) 1, and IFN-γ inducible protein- (IP-) 10, regulated upon activation normal T cell expressed sequence (RANTES) in a dose-dependent manner. Expression of nuclear factor- (NF-) κB p65 was significantly decreased and phosphorylation of extracellular signal-regulated kinase (Erk), c-Jun NH2-terminal kinase (JNK), and PI3K/Akt by GBH, but not p38 MAPK, was decreased. Furthermore, production of anti-inflammatory cytokine IL-10 was increased and Heme oxygenase-1 (HO-1) was upregulated via the nuclear factor-E2-related factor 2 (NRF2)/cAMP response element-binding protein (CREB) pathway, collectively indicating the neuroprotective effects of GBH. We concluded that GBH may suppress neuroinflammatory responses by inhibiting NF-κB activation and upregulating the neuroprotective factor, HO-1. These results suggest that GBH has potential as anti-inflammatory and neuroprotective agents against microglia-mediated neuroinflammatory disorders.

2020 ◽  
Vol 21 (14) ◽  
pp. 4839 ◽  
Author(s):  
Wonmin Ko ◽  
Chi-Su Yoon ◽  
Kwan-Woo Kim ◽  
Hwan Lee ◽  
Nayeon Kim ◽  
...  

Heme oxygenase (HO)-1 is a detoxifying phase II enzyme that plays a role in both inflammatory and oxidative stress responses. Curdrania tricuspidata is widespread throughout East Asia and is used as a therapeutic agent in traditional medicine. We investigated whether treatment with sixteen flavonoid or xanthone compounds from C. tricuspidata could induce HO-1 expression in HT22 hippocampal cells, RAW264.7 macrophage, and BV2 microglia. In these compounds, kuwanon C showed the most remarkable HO-1 expression effects. In addition, treatment with kuwanon C reduced cytoplasmic nuclear erythroid 2-related factor (Nrf2) expression and increased Nrf2 expression in the nucleus. Significant inhibition of glutamate-induced oxidative injury and induction of reactive oxygen species (ROS) occurred when HT22 hippocampal cells were pretreated with kuwanon C. The levels of inflammatory mediator and cytokine, which increased following lipopolysaccharide (LPS) stimulation, were suppressed in RAW264.7 macrophage and BV2 microglia after kuwanon C pretreatment. Kuwanon C also attenuated p65 DNA binding and translocation into the nucleus in LPS-induced RAW264.7 and BV2 cells. The anti-inflammatory, anti-neuroinflammatory, and neuroprotective effects of kuwanon C were reversed when co-treatment with HO-1 inhibitor of tin protoporphyrin-IX (SnPP). These results suggest that the neuroprotective and anti-inflammatory effects of kuwanon C are regulated by HO-1 expression.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Wafa A. AL-Megrin ◽  
Afrah F. Alkhuriji ◽  
Al Omar S. Yousef ◽  
Dina M. Metwally ◽  
Ola A. Habotta ◽  
...  

The abundant use of lead (Pb; toxic heavy metal) worldwide has increased occupational and ecosystem exposure, with subsequent negative health effects. The flavonoid luteolin (LUT) found in many natural foodstuffs possesses antioxidant and anti-inflammatory properties. Herein, we hypothesized that LUT could mitigate liver damage induced by exposure to lead acetate (PbAc). Male Wistar rats were allocated to four groups: control group received normal saline, LUT-treated group (50 mg/kg, oral, daily), PbAc-treated group (20 mg/kg, i.p., daily), and LUT+PbAc-treated group (received the aforementioned doses via the respective routes of administration); the rats were treated for 7 days. The results revealed that PbAc exposure significantly increased hepatic Pb residue and serum activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin value. Oxidative reactions were observed in the liver tissue following PbAc intoxication, characterized by the depletion and downregulation of antioxidant proteins (glutathione, glutathione reductase, glutathione peroxidase, superoxide dismutase, catalase, nuclear factor erythroid 2-related factor 2, and heme oxygenase-1), and an increase in oxidants (malondialdehyde and nitric oxide). Additionally, PbAc increased the release and expression of the pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-1 beta), inducible nitric oxide synthase, and nuclear factor kappa B. Moreover, PbAc enhanced hepatocyte loss by increasing the expression of pro-apoptotic proteins (Bax and caspase-3) and downregulating the anti-apoptotic protein (Bcl-2). The changes in the aforementioned parameters were further confirmed by noticeable histopathological lesions. LUT supplementation significantly reversed all of the tested parameters in comparison with the PbAc-exposed group. In conclusion, our findings describe the potential mechanisms involved in the alleviation of PbAc-induced liver injury by luteolin via its potent anti-inflammatory, antioxidant, and anti-apoptotic properties.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3755 ◽  
Author(s):  
You-Chang Oh ◽  
Yun Hee Jeong ◽  
Wei Li ◽  
Younghoon Go

Angelicae Gigantis Radix (AGR) has been widely used as a traditional medicine in East Asia. The effects of AGR on neuroinflammation have not previously been studied in detail. In the study presented here, we investigated the antineuroinflammatory properties of this herb and its mechanism of operation. The effects of AGR on neuroinflammation were studied by measuring the production of inflammatory factors and related enzymes, and analyzing the expression levels of proteins and genes involved its activity, in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that AGR pretreatment strongly inhibits the production of nitric oxide (NO), cytokines, and the enzymes inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2, and effectively induces the activation of heme oxygenase (HO)-1 and its regulator, nuclear factor erythroid 2-related factor 2 (Nrf-2). We also found that AGR effectively regulates the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK). We confirmed the antineuroinflammatory effects of the main constituents of the plant as identified by high-performance liquid chromatography (HPLC). Our results indicate that the neuroinflammation inhibitory activity of AGR occurs through inhibition of NF-κB and MAPK and activation of Nrf-2.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Dong-Sung Lee ◽  
Wonmin Ko ◽  
Chi-Su Yoon ◽  
Dong-Cheol Kim ◽  
Jinju Yun ◽  
...  

The brain is vulnerable to oxidative stress and inflammation that can occur as a result of aging or neurodegenerative diseases. Our work has sought to identify natural products that regulate heme oxygenase (HO)-1 and to determine their mechanism of action in neurodegenerative diseases. KCHO-1 is a novel herbal therapeutic containing 30% ethanol (EtOH) extracts from nine plants. In this study, we investigated the antineuroinflammatory effects of KCHO-1 in lipopolysaccharide- (LPS-) treated mouse BV2 microglia. KCHO-1 inhibited the protein expression of inducible nitric oxide synthase (iNOS), iNOS-derived nitric oxide (NO), cyclooxygenase- (COX-) 2, and COX-2-derived prostaglandin E2 (PGE2) in LPS-stimulated BV2 microglia. It also reduced tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), and IL-6 production. This effect was correlated with the suppression of inhibitor of nuclear factor kappa B-α(IκB-α) phosphorylation and degradation and nuclear factor kappa B (NF-κB) translocation and DNA binding. Additionally, KCHO-1 upregulated HO-1 expression by promoting nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in mouse BV2 microglia. Tin protoporphyrin (SnPP), an HO activity inhibitor, was used to verify the inhibitory effects of KCHO-1 on proinflammatory mediators and proteins associated with HO-1 expression. Our data suggest that KCHO-1 has therapeutic potential in neurodegenerative diseases caused by neuroinflammation.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1387
Author(s):  
Yun Hee Jeong ◽  
Tae In Kim ◽  
You-Chang Oh ◽  
Jin Yeul Ma

This study aimed to determine the anti-inflammatory and hepatoprotective effects of Lysimachiae Herba ethanolic extract (LHE) in lipopolysaccharide (LPS)-stimulated macrophages and in a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. Then, the production of inflammatory mediators and the activation of related pathways in macrophages were explored. Finally, we assessed the serum aminotransferase levels and the expression of inflammatory/antioxidant molecules in liver tissues in mice. Results revealed that LHE treatment significantly inhibited the production of inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Molecular data showed that LHE remarkably increased the activities of the antioxidant pathway and inhibited the phosphorylation of mitogen-activated protein kinase as well as the transcriptional activity of nuclear factor-κB induced by LPS. Furthermore, it prevented acute liver damage caused by LPS/D-GalN-induced hepatitis by inhibiting aminotransferase levels and histopathological changes in mice. Moreover, treatment with LHE significantly inhibited the activation of inflammatory pathways and increased the expression of antioxidant molecules including heme oxygenase-1/Nuclear factor erythroid 2-related factor 2. In conclusion, LHE has potent anti-inflammatory and hepatoprotective effects in LPS-stimulated macrophages and the LPS/D-GalN-induced acute hepatitis mouse model. Thus, it can be a treatment option for inflammation, hepatitis, and liver injury.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1324
Author(s):  
Su-Lim Kim ◽  
Hack Sun Choi ◽  
Yu-Chan Ko ◽  
Bong-Sik Yun ◽  
Dong-Sun Lee

Inflammation is the first response of the immune system against bacterial pathogens. This study isolated and examined an antioxidant derived from Lactobacillus fermentation products using cultured media with 1% beet powder. The antioxidant activity of the beet culture media was significantly high. Antioxidant activity-guided purification and repeated sample isolation yielded an isolated compound, which was identified as 5-hydoxymaltol using nuclear magnetic resonance spectrometry. We examined the mechanism of its protective effect on lipopolysaccharide (LPS)-induced inflammation of macrophages. 5-Hydroxymaltol suppressed nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells. It also suppressed tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and inducible nitric oxide synthase (iNOS) in the messenger RNA and protein levels in LPS-treated RAW 264.7 cells. Moreover, it suppressed LPS-induced nuclear translocation of NF-κB (p65) and mitogen-activated protein kinase activation. Furthermore, 5-hydroxymaltol reduced LPS-induced reactive oxygen species (ROS) production as well as increased nuclear factor erythroid 2–related factor 2 and heme oxygenase 1 expression. Overall, this study found that 5-hydroxymaltol has anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophage cells based on its inhibition of pro-inflammatory cytokine production depending on the nuclear factor κB signaling pathway, inhibition of LPS-induced reactive oxygen species production, inhibition of LPS-induced mitogen-activated protein kinase induction, and induction of the nuclear factor erythroid 2–related factor 2/heme oxygenase 1 signaling pathway. Our data showed that 5-hydroxymaltol may be an effective compound for treating inflammation-mediated diseases.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3317 ◽  
Author(s):  
Li-Yu Wang ◽  
Chin-Shiu Huang ◽  
Yu-Hsuan Chen ◽  
Chin-Chu Chen ◽  
Chien-Chih Chen ◽  
...  

Previous studies have revealed the anti-inflammatory and neuroprotective properties of Hericium erinaceus extracts, including the fact that the active ingredient erinacine C (EC) can induce the synthesis of nerve growth factor. However, there is limited research on the use and mechanisms of action of EC in treating neuroinflammation. Hence, in this study, the inflammatory responses of human BV2 microglial cells induced by LPS were used to establish a model to assess the anti-neuroinflammatory efficacy of EC and to clarify its possible mechanisms of action. The results showed that EC was able to reduce the levels of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) proteins produced by LPS-induced BV2 cells, in addition to inhibiting the expression of NF-κB and phosphorylation of IκBα (p-IκBα) proteins. Moreover, EC was found to inhibit the Kelch-like ECH-associated protein 1 (Keap1) protein, and to enhance the nuclear transcription factor erythroid 2-related factor (Nrf2) and the expression of the heme oxygenase-1 (HO-1) protein. Taken together, these data suggest that the mechanism of action of EC involves the inhibition of IκB, p-IκBα, and iNOS expressions and the activation of the Nrf2/HO-1 pathway.


2020 ◽  
Vol 21 (6) ◽  
pp. 2007 ◽  
Author(s):  
Young-Chang Cho ◽  
Jiyoung Park ◽  
Sayeon Cho

Various herbal extracts containing luteolin-7-O-glucuronide (L7Gn) have been traditionally used to treat inflammatory diseases. However, systemic studies aimed at elucidating the anti-inflammatory and anti-oxidative mechanisms of L7Gn in macrophages are insufficient. Herein, the anti-inflammatory and anti-oxidative effects of L7Gn and their underlying mechanisms of action in macrophages were explored. L7Gn inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by transcriptional regulation of inducible NO synthase (iNOS) in a dose-dependent manner. The mRNA expression of inflammatory mediators, including cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α), was inhibited by L7Gn treatment. This suppression was mediated through transforming growth factor beta-activated kinase 1 (TAK1) inhibition that leads to reduced activation of nuclear factor-κB (NF-κB), p38, and c-Jun N-terminal kinase (JNK). L7Gn also enhanced the radical scavenging effect and increased the expression of anti-oxidative regulators, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H quinone oxidoreductase 1 (NQO1), by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) activation. These results indicate that L7Gn exhibits anti-inflammatory and anti-oxidative properties in LPS-stimulated murine macrophages, suggesting that L7Gn may be a suitable candidate to treat severe inflammation and oxidative stress.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1430
Author(s):  
Yi-Ping Huang ◽  
Dar-Ren Chen ◽  
Wen-Jen Lin ◽  
Yu-Hsien Lin ◽  
Jiann-Yeu Chen ◽  
...  

Chronic inflammation induces autoimmune disorders and chronic diseases. Several natural products activate nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, attenuating inflammatory responses. Ergosta-7,9(11),22-trien-3β-ol (EK100) isolated from Cordyceps militaris showed anti-inflammatory and antioxidative activity, but those mechanisms are still unclear. This study is the first to investigate EK100 on antioxidant Nrf2 relative genes expression in LPS-stimulated macrophage-like cell lines. The results showed that EK100 reduced IL-6 (interleukin-6) and tumor necrosis factor-α production. EK100 also attenuated a mitogen-activated protein kinase/activator protein-1 (MAPK/AP-1) pathway and interleukin-6/Janus kinase/signal transducer and activator of transcription (IL-6/JAK/STAT) pathway in LPS-stimulated cells. Toll-like receptor 4 (TLR4) inhibitor CLI-095 and MAPK inhibitors can synergize the anti-inflammatory response of EK100 in LPS-stimulated cells. Moreover, EK100 activated Nrf2/HO-1 (heme oxygenase-1) signaling in LPS-stimulated murine macrophage-like RAW 264.7 cells, murine microglial BV2 cells, and human monocytic leukemia THP-1 cells. However, Nrf2 small interfering RNA (Nrf2 siRNA) reversed EK100-induced antioxidative proteins expressions. In conclusion, EK100 showed anti-inflammatory responses via activating the antioxidative Nrf2/HO-1 signaling and inhibiting TLR4 related MAPK/AP-1 induced IL-6/JAK/STAT pathways in the LPS-stimulated cells in vitro. The results suggest EK100 acts as a novel antioxidant with multiple therapeutic targets that can potentially be developed to treat chronic inflammation-related diseases.


2014 ◽  
Vol 42 (05) ◽  
pp. 1229-1244 ◽  
Author(s):  
Bin Li ◽  
Hee-Jin Choi ◽  
Dong-Sung Lee ◽  
Hyuncheol Oh ◽  
Youn-Chul Kim ◽  
...  

Amomum tsao-ko Crevost et Lemaire, used as a spice in Asia, is an important source of Chinese cuisine and traditional Chinese medicines. A. tsao-ko is reported to exert a variety of biological and pharmacological activities, including anti-proliferative, anti-oxidative and neuroprotective effects. In this study, NNMBS227, consisting of the ethanol extract of A. tsao-ko, exhibited potent anti-inflammatory activities in RAW264.7 macrophages. We investigated the effect of NNMBS227 in the suppression of pro-inflammatory mediators, including pro-inflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2) and cytokines (tumor necrosis factor-α and interleukin-1β) in LPS stimulated macrophages. NNMBS227 also inhibited the phosphorylation and degradation of IκB-α, as well as the nuclear translocation of nuclear factor kappa B (NF-κB) p65 caused by stimulation with LPS. In addition, NNMBS227 induced heme oxygenase (HO)-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in macrophages. Using tin protoporphyrin (SnPP), an HO activity inhibitor, we confirmed an association between the anti-inflammatory effects of NNMBS227 and the up-regulation of HO-1. These findings suggest that Nrf2-dependent increases in the expression of HO-1 induced by NNMBS227 conferred anti-inflammatory activities in LPS stimulated RAW264.7 macrophages.


Sign in / Sign up

Export Citation Format

Share Document