scholarly journals Lignocellulosic Biomass Fractionation by Mineral Acids and Resulting Extract Purification Processes: Conditions, Yields, and Purities

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4273 ◽  
Author(s):  
Vincent Oriez ◽  
Jérôme Peydecastaing ◽  
Pierre-Yves Pontalier

Fractionation of lignocellulose is a fundamental step in the valorization of cellulose, hemicelluloses, and lignin to produce various sustainable fuels and chemicals. Mineral acid fractionation is one of the most applied process and leads to the solubilization and hydrolysis of cellulose and hemicelluloses, whereas most of the lignin remains insoluble and can be separated from the extract. The obtained monomeric sugars in the acid extract are in solution with salts, sugar degradation products, and phenolic molecules. Downstream processing is required to purify the sugars and further valorize them into fuels or chemicals with the use of chemical or biochemical reactions. This purification step also allows the recycling of the mineral acid and the valorization of the sugar degradation products and the co-extracted phenolic molecules, adding value to the whole biorefinery scheme. Many purification techniques have been studied, providing several options in terms of yields, purities, and cost of the process. This review presents the conditions used for the mineral acid fractionation step and a wide variety of purification techniques applied on the obtained hydrolysate, with a focus on the associated yields and purities. Values from the literature are expressed in a standard way in order to simplify comparison between the different processes.

2021 ◽  
Author(s):  
Yuxiao Dong ◽  
Dongshen Tong ◽  
Laibin Ren ◽  
Xingtao Chen ◽  
Hao Zhang ◽  
...  

2020 ◽  
Vol 96 (7) ◽  
Author(s):  
Naji M Bassil ◽  
Joe S Small ◽  
Jonathan R Lloyd

ABSTRACT Intermediate-level radioactive waste includes cellulosic materials, which under the hyperalkaline conditions expected in a cementitious geological disposal facility (GDF) will undergo abiotic hydrolysis forming a variety of soluble organic species. Isosaccharinic acid (ISA) is a notable hydrolysis product, being a strong metal complexant that may enhance the transport of radionuclides to the biosphere. This study showed that irradiation with 1 MGy of γ-radiation under hyperalkaline conditions enhanced the rate of ISA production from the alkali hydrolysis of cellulose, indicating that radionuclide mobilisation to the biosphere may occur faster than previously anticipated. However, irradiation also made the cellulose fibres more available for microbial degradation and fermentation of the degradation products, producing acidity that inhibited ISA production via alkali hydrolysis. The production of hydrogen gas as a fermentation product was noted, and this was associated with a substantial increase in the relative abundance of hydrogen-oxidising bacteria. Taken together, these results expand our conceptual understanding of the mechanisms involved in ISA production, accumulation and biodegradation in a biogeochemically active cementitious GDF.


2014 ◽  
Vol 86 (5) ◽  
pp. 867-879 ◽  
Author(s):  
Shannon Ewanick ◽  
Elliott Schmitt ◽  
Rick Gustafson ◽  
Renata Bura

AbstractThe production of fuels and chemicals from lignocellulosic biomass demands efficient processes to compete with fossil fuel-derived products. Key biorefinery processes, such as enzymatic hydrolysis of cellulose and microbial fermentation, can be monitored by advanced sensors in real time, providing information about reactant and product concentration, contamination, and reaction progress. Spectroscopic techniques such as Raman spectroscopy provide a means of quickly and accurately assessing many types of reaction mixtures non-destructively, in real time, and with no costly sample preparation and analysis time. Raman spectroscopy techniques have been developed to accurately quantify a number of compounds present in lignocellulosic processes, and methods have been developed to overcome the presence of fluorescent compounds that can increase the spectral background. Online Raman sensors also can provide the feedback measurements necessary for advanced process controls (APCs). Specifically, model predictive control, a common APC used extensively throughout similar processing industries, is especially well suited for ensuring optimal production of bio-based chemicals from lignocellulosic material.


2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


1986 ◽  
Vol 51 (12) ◽  
pp. 2786-2797
Author(s):  
František Grambal ◽  
Jan Lasovský

Kinetics of formation of 1,2,4-oxadiazoles from 24 substitution derivatives of O-benzoylbenzamidoxime have been studied in sulphuric acid and aqueous ethanol media. It has been found that this medium requires introduction of the Hammett H0 function instead of the pH scale beginning as low as from 0.1% solutions of mineral acids. Effects of the acid concentration, ionic strength, and temperature on the reaction rate and on the kinetic isotope effect have been followed. From these dependences and from polar effects of substituents it was concluded that along with the cyclization to 1,2,4-oxadiazoles there proceeds hydrolysis to benzamidoxime and benzoic acid. The reaction is thermodynamically controlled by the acid-base equilibrium of the O-benzylated benzamidoximes.


2013 ◽  
Vol 85 (17) ◽  
pp. 8121-8126 ◽  
Author(s):  
Britta Opitz ◽  
Andreas Prediger ◽  
Christian Lüder ◽  
Marrit Eckstein ◽  
Lutz Hilterhaus ◽  
...  

1993 ◽  
Vol 48 (1-2) ◽  
pp. 10-15 ◽  
Author(s):  
Sabine Gubatz ◽  
Rolf Wiermann

The results of tracer experiments performed with anthers of Tulipa cv. Apeldoorn have already shown that a high level of incorporation into the sporopollenin fraction was achieved, when [14C]phenylalanine was applicated as a precursor. In order to investigate whether the substantial incorporation of [14C]phenylalanine is a unique phenomenon restricted to Tulipa, tracer experiments were carried out on anthers of Cucurbita maxima. The sporopollenin fraction was isolated and purified by a gentle method including extractions with various solvents, incubations with hydrolysing enzymes and fractionated saponifications. The remaining, as well as the released radioactivity, was determined after each purification step. After the application of [U-14C]phenylalanine, a substantial incorporation into the sporopollenin fraction was determined. The values were clearly higher than those obtained with [1-14C]glucose or those from corresponding experiments on Tulipa anthers. After potash fusion of sporopollenin fractions labeled via [U-14C]phenylalanine, p-hydroxybenzoic acid was shown to be the main com ponent among the ether soluble acids; moreover it showed the highest level of radioactivity. No radioactivity was detected in the degradation products oxalic acid, benzoic acid, phthalic acid and terephthalic acid or octanedioic acid- and decanedioic acid-dimethylester.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lin Dai ◽  
Tian Huang ◽  
Kankan Jiang ◽  
Xin Zhou ◽  
Yong Xu

Abstract Background Pretreatment is the key step for utilizing lignocellulosic biomass, which can extract cellulose from lignin and disrupt its recalcitrant crystalline structure to allow much more effective enzymatic hydrolysis; and organic acids pretreatment with dual benefic for generating xylooligosaccharides and boosting enzymatic hydrolysis has been widely used in adding values to lignocellulose materials. In this work, furoic acid, a novel recyclable organic acid as catalyst, was employed to pretreat sugarcane bagasse to recover the xylooligosaccharides fraction from hemicellulose and boost the subsequent cellulose saccharification. Results The FA-assisted hydrolysis of sugarcane bagasse using 3% furoic acid at 170 °C for 15 min resulted in the highest xylooligosaccharides yield of 45.6%; subsequently, 83.1 g/L of glucose was harvested by a fed-batch operation with a solid loading of 15%. Overall, a total of 120 g of xylooligosaccharides and 335 g glucose could be collected from 1000 g sugarcane bagasse starting from the furoic acid pretreatment. Furthermore, furoic acid can be easily recovered by cooling crystallization. Conclusion This work put forward a novel furoic acid pretreatment method to convert sugarcane bagasse into xylooligosaccharides and glucose, which provides a strategy that the sugar and nutraceutical industries can be used to reduce the production cost. The developed process showed that the yields of xylooligosaccharides and byproducts were controllable by shortening the reaction time; meanwhile, the recyclability of furoic acid also can potentially reduce the pretreatment cost and potentially replace the traditional mineral acids pretreatment.


Sign in / Sign up

Export Citation Format

Share Document