scholarly journals Design, Synthesis, and In Vitro Evaluation of Benzofuro[3,2-c]Quinoline Derivatives as Potential Antileukemia Agents

Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 203 ◽  
Author(s):  
Ying Lin ◽  
Dong Xing ◽  
Wen-Biao Wu ◽  
Gao-Ya Xu ◽  
Li-Fang Yu ◽  
...  

Herein, we design and synthesize an array of benzofuro[3,2-c]quinolines starting from 3-(2-methoxyphenyl)quinolin-4(1H)ones via a sequential chlorination/demethylation, intramolecular cyclization pathway. This sequential transformation was efficient, conducted under metal-free and mild reaction conditions, and yielded corresponding benzofuro[3,2-c]quinolines in high yields. In vitro biological evaluation indicated that such type of compounds showed excellent antileukemia activity and selectivity, and therefore may offer a promising hit compound for developing antileukemia compounds.

2019 ◽  
Vol 16 (10) ◽  
pp. 837-845
Author(s):  
Sandhya Jonnala ◽  
Bhaskar Nameta ◽  
Murthy Chavali ◽  
Rajashaker Bantu ◽  
Pallavi Choudante ◽  
...  

A class of 1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)naphthalen-2-ol derivatives (4a-t) has been synthesized in good yields through a three component coupling reaction. The newly synthesized compounds were evaluated for their in vitro antiproliferative activity against five cell lines such as DU145 (human prostate cancer), MDA-MB-B231 (human breast cancer), SKOV3 (human ovarian cancer), B16-F10 (mouse skin melanoma) and CHO-K1 (Chinese hamster ovary cells), a noncancerous cell line. In vitro inhibitory activity indicates that compounds 4a, 4b, 4c, 4d, 4g, 4j, and 4o exhibited potent anti-proliferative behavior. Among them, compounds 4g, 4j and 4o found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking facilitates to investigate the probable binding mode and key active site interactions in tubulins α and β proteins. The docking results are complementary to experimental results.


Author(s):  
Reema Abu Khalaf ◽  
Shorooq Alqazaqi ◽  
Maram Aburezeq ◽  
Dima Sabbah ◽  
Ghadeer Albadawi ◽  
...  

Background: Diabetes mellitus is a chronic metabolic disorder, characterized by hyperglycemia over a prolonged period, disturbance of fat, protein and carbohydrate metabolism, resulting from defective insulin secretion, insulin action or both. Dipeptidyl peptidase-IV (DPP-IV) inhibitors are relatively a new class of oral hypoglycemic agents that reduces the deterioration of gut-derived endogenous incretin hormones that are secreted in response to food ingestion to stimulate the secretion of insulin from beta cells of pancreas. Objective: In this study, synthesis, characterization, and biological assessment of twelve novel phenanthridine sulfonamide derivatives 3a-3l as potential DPP-IV inhibitors was carried out. The target compounds were docked to study the molecular interactions and binding affinities against DPP-IV enzyme. Methods: The synthesized molecules were characterized using 1H-NMR, 13C-NMR, IR, and MS. Quantum-polarized ligand docking (QPLD) was also performed. Results: In vitro biological evaluation of compounds 3a-3l reveals comparable DPP-IV inhibitory activities ranging from 10%-46% at 100 µM concentration, where compound 3d harboring ortho-fluoro moiety exhibited the highest inhibitory activity. QPLD study shows that compounds 3a-3l accommodate DPP-IV binding site and form H-bonding with the R125, E205, E206, S209, F357, R358, K554, W629, S630, Y631, Y662, R669 and Y752 backbones. Conclusion: In conclusion, phenanthridine sulfonamides could serve as potential DPP-IV inhibitors that require further structural optimization in order to enhance their inhibitory activity.


2021 ◽  
Vol 36 (1) ◽  
pp. 1370-1377
Author(s):  
Daniel A. S. Kitagawa ◽  
Rafael B. Rodrigues ◽  
Thiago N. Silva ◽  
Wellington V. dos Santos ◽  
Vinicius C. V. da Rocha ◽  
...  

ChemMedChem ◽  
2021 ◽  
Author(s):  
Walter Damián Guerra ◽  
Daniel Lucena-Agell ◽  
Rafael Hortigüela ◽  
Roberto Arturo Rossi ◽  
J. Fernando Díaz ◽  
...  

2020 ◽  
Vol 32 (3) ◽  
pp. 580-586
Author(s):  
Ranjit V. Gadhave ◽  
Bhanudas S. Kuchekar

A new series of N-(benzo[d]thiazol-2-yl)-[1,2,4]triazolo[4,3-c]quinazoline-5-carboxamide derivatives were synthesized by condensation of [1,2,4]triazolo[4,3-c]quinazoline-5-carboxylate derivatives with substituted benzothiazoles. The chemical structures of the synthesized compounds were confirmed by FT-IR, MS and 1H NMR spectra. Designed triazoloquinazoline derivatives were docked with oxido-reductase enzyme (PDB Code 4h1j) and DNA gyrase enzyme (PDB Code 3g75). Based on high binding affinity score, the best compound were selected for synthesis and subjected to in vitro antioxidant and antibacterial activity. Compounds 7a and 7d were found to be most active compounds as antioxidant agent among this series when compared with ascorbic acid. Compounds 7a, 7d and 7f were found to be most active compounds as an antibacterial agents among this series when compared with ciprofloxacin against bacterial strains such as S. aureus (ATCC 25923), E. coli (ATCC 25922) and P. aeruginosa (ATCC 27853). Study revealed that the most active compounds after structural modifications can be exploited as lead molecules for other pharmacological activities such as anti-inflammatory, anticancer and antidepressant activities.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 867
Author(s):  
Bruno Oyallon ◽  
Marie Brachet-Botineau ◽  
Cédric Logé ◽  
Thomas Robert ◽  
Stéphane Bach ◽  
...  

Proviral integration site for Moloney murine leukemia virus (Pim)-1/2 kinase overexpression has been identified in a variety of hematologic (e.g., multiple myeloma or acute myeloid leukemia (AML)) and solid (e.g., colorectal carcinoma) tumors, playing a key role in cancer progression, metastasis, and drug resistance, and is linked to poor prognosis. These kinases are thus considered interesting targets in oncology. We report herein the design, synthesis, structure–activity relationships (SAR) and in vitro evaluations of new quinoxaline derivatives, acting as dual Pim1/2 inhibitors. Two lead compounds (5c and 5e) were then identified, as potent submicromolar Pim-1 and Pim-2 inhibitors. These molecules were also able to inhibit the growth of the two human cell lines, MV4-11 (AML) and HCT-116 (colorectal carcinoma), expressing high endogenous levels of Pim-1/2 kinases.


2017 ◽  
Vol 136 ◽  
pp. 548-560 ◽  
Author(s):  
Jianrong Liu ◽  
Aurélie Maisonial-Besset ◽  
Barbara Wenzel ◽  
Damien Canitrot ◽  
Ariane Baufond ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document