scholarly journals Sugar Production from Hybrid Poplar Sawdust: Optimization of Enzymatic Hydrolysis and Wet Explosion Pretreatment

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3396 ◽  
Author(s):  
Rajib Biswas ◽  
Philip J. Teller ◽  
Muhammad U. Khan ◽  
Birgitte K. Ahring

Wet explosion pretreatment of hybrid poplar sawdust (PSD) for the production of fermentable sugar was carried out in the pilot-scale. The effects of pretreatment conditions, such as temperature (170–190 °C), oxygen dosage (0.5–7.5% of dry matter (DM), w/w), residence time (10–30 min), on cellulose and hemicellulose digestibility after enzymatic hydrolysis were ascertained with a central composite design of the experiment. Further, enzymatic hydrolysis was optimized in terms of temperature, pH, and a mixture of CTec2 and HTec2 enzymes (Novozymes). Predictive modeling showed that cellulose and hemicellulose digestibility of 75.1% and 83.1%, respectively, could be achieved with a pretreatment at 177 °C with 7.5% O2 and a retention time of 30 min. An increased cellulose digestibility of 87.1% ± 0.1 could be achieved by pretreating at 190 °C; however, the hemicellulose yield would be significantly reduced. It was evident that more severe conditions were required for maximal cellulose digestibility than that of hemicellulose digestibility and that an optimal sugar yield demanded a set of conditions, which overall resulted in the maximum sugar yield.

2021 ◽  
Author(s):  
Fei Li ◽  
Xiaohong Lu ◽  
Yiming Li ◽  
Xia Zhou ◽  
Zhezhen Zhao ◽  
...  

Abstract In this study, the effects and mechanism of pretreatments of three types of chemical reagents combined with Fenton on poplar sawdust were studied and the optimization of enzymatic hydrolysis conditions was conducted using response surface methodology. The results showed that cellulase and hemicellulase had the best hydrolysis effect after NaOH-Fenton pretreatment, which were 63.73% and 29.29%, respectively. The optimal process of poplar substrate was to react in 1% NaOH at 100 ℃ for 1 h, then placed in the Fenton reaction system of 0.2 mmol Fe2+ and 25 mmol H2O2 for 7 h, and finally subjected to enzymatic hydrolysis for 72 h at 52 ℃, with a liquid-solid ratio of 33 and 15 μL/g of β-glycosidase. Under this condition, the enzymatic hydrolysis rates of cellulase and hemicellulase reached 86.65% and 43.9%, respectively. In conclusion, the combination of NaOH and Fenton pretreatment can effectively promote the enzymatic hydrolysis of poplar sawdust, which has great potential in the production of cellulosic ethanol.


Author(s):  
Yohanita Restu Widihastuty ◽  
Sutini Sutini ◽  
Aida Nur Ramadhani

Pineapple leaf waste is one agricultural waste that has high cellulose content. Pineapple leaf waste's complex structure contains a bundle of packed fiber that makes it hard to remove lignin and hemicellulose structure, so challenging to produce reducing sugar. Dried pineapple leaf waste pretreated with a grinder to break its complex structure. Delignification process using 2% w/v NaOH solution at 87oC for 60 minutes has been carried out to remove lignin and hemicellulose structure so reducing sugar could be produced. Delignified pineapple leaf waste has been enzymatic hydrolyzed using cellulase enzyme (6 mL, 7 mL, and 8 mL) to produce reducing sugar. The sample was incubated in an incubator shaker at 155 rpm at 45, 55, and 60oC for 72 hours. Determination of reducing sugar yield had been carried out using the Dubois method and HPLC. The model indicated that the optimum operating condition of enzymatic hydrolysis is 7 mL of cellulase enzyme at 55oC to produce 96,673 mg/L reducing sugar. This result indicated that the enzymatic hydrolysis operating condition improved the reducing sugar yield from pineapple leaf waste. The optimum reducing sugar yield can produce biofuel by the saccharification process.


2017 ◽  
Vol 60 (4) ◽  
pp. 1025-1033
Author(s):  
Alicia A. Modenbach ◽  
Sue E. Nokes ◽  
Michael D. Montross ◽  
Barbara L. Knutson

Abstract. High-solids lignocellulosic pretreatment using NaOH followed by high-solids enzymatic hydrolysis was evaluated for an on-farm biochemical conversion process. Increasing the solids loadings for these processes has the potential for increasing glucose concentrations and downstream ethanol production; however, sequential processing at high-solids loading similar to an on-farm cellulose conversion system has not been studied. This research quantified the effects of high-solids pretreatment with NaOH and subsequent high-solids enzymatic hydrolysis on cellulose conversion. As expected, conversion efficiency was reduced; however, the highest glucose concentration (40.2 g L-1), and therefore the highest potential ethanol concentration, resulted from the high-solids combined pretreatment and hydrolysis. Increasing the enzyme dosage improved cellulose conversion from 9.6% to 36.8% when high-solids loadings were used in both unit operations; however, increasing NaOH loading and pretreatment time did not increase the conversion efficiency. The enzyme-to-substrate ratio had a larger impact on cellulose conversion than the NaOH pretreatment conditions studied, resulting in recommendations for an on-farm bioconversion system. Keywords: Corn stover, Enzymatic hydrolysis, Enzyme loading, High solids, Low solids, Sodium hydroxide.


Sign in / Sign up

Export Citation Format

Share Document