scholarly journals d-allulose Ameliorates Metabolic Dysfunction in C57BL/KsJ-db/db Mice

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3656
Author(s):  
Dayoun Lee ◽  
Youngji Han ◽  
Eun-Young Kwon ◽  
Myung-Sook Choi

d-allulose is an uncommon sugar that provides almost no calories when consumed. Its sweetness is 70% that of sucrose. d-allulose is a metabolic regulator of glucose and lipid metabolism. However, few reports concerning its effect on diabetes and related metabolic disturbances in db/db mice are available. In this study, we evaluated d-allulose’s effect on hyperglycemia, hyperinsulinemia, diabetes and inflammatory responses in C57BL/KsJ-db/db mice. Mice were divided into normal diet, erythritol supplemented (5% w/w), and d-allulose supplemented (5% w/w) groups. Blood glucose and plasma glucagon levels and homeostatic model assessment (HOMA-IR) were significantly lower in the d-allulose group than in the normal diet group, and plasma insulin level was significantly increased. Further, d-allulose supplement significantly increased hepatic glucokinase activity and decreased hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activity. Expression of glucose transporter 4, insulin receptor substrate 1, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha and AKT serine/threonine kinase 2 were also upregulated by d-allulose supplement in adipocyte and muscle. Finally, d-allulose effectively lowered plasma and hepatic triglyceride and free fatty acid levels, and simultaneously reduced hepatic fatty acid oxidation and carnitine palmitoyl transferase activity. These changes are likely attributable to suppression of hepatic fatty acid synthase and glucose-6-phosphate dehydrogenase activity. Notably, d-allulose also reduced pro-inflammatory adipokine and cytokine levels in plasma. Our results indicate that d-allulose is an effective sugar substitute for improving lipid and glucose metabolism.

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5503
Author(s):  
Seong-min Kim ◽  
Jee-Young Imm

Although a variety of beneficial health effects of natural flavonoids, including chrysin, has been suggested, poor solubility and bioavailability limit their practical use. As a promising delivery system, chrysin-loaded phytosomes (CPs) were prepared using egg phospholipid (EPL) at a 1:3 molar ratio and its antidiabetic effects were assessed in db/db diabetic mice. Male C57BLKS/J-db/db mice were fed a normal diet (control), chrysin diet (100 mg chrysin/kg), CP diet (100 mg chrysin equivalent/kg), metformin diet (200 mg/kg) or EPL diet (vehicle, the same amount of EPL used for CP preparation) for 9 weeks. Administration of CP significantly decreased fasting blood glucose and insulin levels in db/db mice compared with the control. An oral glucose tolerance test and homeostatic model assessment for insulin resistance were significantly improved in the CP group (p < 0.05). CP treatment suppressed gluconeogenesis via downregulation of phosphoenolpyruvate carboxykinase while it promoted glucose uptake in the skeletal muscle and liver of db/db mice (p < 0.05). The CP-mediated improved glucose utilization in the muscle was confirmed by upregulation of glucose transporter type 4, hexokinase2 and peroxisome proliferator-activated receptor γ during treatment (p < 0.05). The CP-induced promotion of GLUT4 plasma translocation was confirmed in the skeletal muscle of db/db mice (p < 0.05). Based on the results, CP showed greater antidiabetic performance compared to the control by ameliorating insulin resistance in db/db mice and phytosome can be used as an effective antidiabetic agent.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Sarah J. Borengasser ◽  
R. Scott Rector ◽  
Grace M. Uptergrove ◽  
E. Matthew Morris ◽  
James W. Perfield ◽  
...  

Background and Aims.This study examined if exercise and omega-3 fatty acid (n3PUFA) supplementation is an effective treatment for hepatic steatosis in obese, hyperphagic Otsuka Long-Evans Tokushima Fatty (OLETF) rats.Methods.Male OLETF rats were divided into 4 groups (n=8/group): (1) remained sedentary (SED), (2) access to running wheels; (EX) (3) a diet supplemented with 3% of energy from fish oil (n3PUFA-SED); and (4) n3PUFA supplementation plus EX (n3PUFA+EX). The 8 week treatments began at 13 weeks, when hepatic steatosis is present in OLETF-SED rats.Results.EX alone lowered hepatic triglyceride (TAG) while, in contrast, n3PUFAs failed to lower hepatic TAG and blunted the ability of EX to decrease hepatic TAG levels in n3PUFAs+EX. Insulin sensitivity was improved in EX animals, to a lesser extent in n3PUFA+EX rats, and did not differ between n3PUFA-SED and SED rats. Only the EX group displayed higher complete hepatic fatty acid oxidation (FAO) to CO2and carnitine palmitoyl transferase-1 activity. EX also lowered hepatic fatty acid synthase protein while both EX and n3PUFA+EX decreased stearoyl CoA desaturase-1 protein.Conclusions.Exercise lowers hepatic steatosis through increased complete hepatic FAO, insulin sensitivity, and reduced expression ofde novofatty acid synthesis proteins while n3PUFAs had no effect.


1997 ◽  
Vol 272 (6) ◽  
pp. E1124-E1129 ◽  
Author(s):  
J. Wilson ◽  
S. Kim ◽  
K. G. Allen ◽  
R. Baillie ◽  
S. D. Clarke

A dietary copper (Cu) deficiency is associated with a twofold increase in hepatic fatty acid biosynthesis. We hypothesized that the induction of hepatic lipogenesis associated with a dietary Cu deficiency reflected an enhanced expression of genes encoding lipogenic enzymes, i.e., fatty acid synthase (FAS). Male weanling rats were pair-meal fed for 42 days a high-sucrose diet that was Cu deficient (CuD; 0.7 microgram Cu/g) or Cu adequate (CuA; 5.0 micrograms Cu/g). The CuD diet increased FAS enzymatic activity twofold (P < 0.05). This rise in enzymatic activity was accompanied by a threefold increase in FAS mRNA and a 2.5-fold increase in FAS gene transcription (P < 0.05). Neither the mRNA abundance nor the rate of gene transcription for phosphoenolpyruvate carboxykinase or beta-actin was affected by the CuD diet. The induction of FAS gene transcription was associated with a 65-85% increase in hepatic reduced glutathione (GSH; P < 0.05). When hepatic GSH synthesis was suppressed by treating CuD rats with L-buthionine sulfoximine, the induction of FAS expression was completely prevented. Similarly, feeding N-acetylcysteine to CuA rats increased hepatic GSH levels 2.5-fold, and this was accompanied by a significant induction in FAS expression. These data indicate that the increase in hepatic lipogenesis associated with a Cu deficiency reflects an induction in hepatic lipogenic gene transcription (i.e., FAS) and that the rate of gene transcription may be dependent on hepatic thiol redox.


2021 ◽  
pp. 101275
Author(s):  
Marina Serrano-Maciá ◽  
Jorge Simón ◽  
Maria J. González-Rellan ◽  
Mikel Azkargorta ◽  
Naroa Goikoetxea-Usandizaga ◽  
...  

Author(s):  
Manoharan Balachandiran ◽  
Zachariah Bobby ◽  
Gowri Dorairajan ◽  
Sajini Elizabeth Jacob ◽  
Victorraj Gladwin ◽  
...  

Abstract Introduction Gestational diabetes mellitus (GDM) exhibit altered placental lipid metabolism. The molecular basis of this altered metabolism is not clear. Altered placental expression of proteins of lipogenesis and fatty acid oxidation may be involved in the placental accumulation of triacylglycerols (TG). The present study was aimed at investigating the differential expressions of placental proteins related to lipid metabolism among GDM women in comparison with control pregnant women (CPW) and to correlate them with maternal and fetal lipid parameters as well as altered fetal growth. Materials and Methods Maternal blood, cord blood, and placental samples were collected from GDM and CPW. The biochemical parameters, glucose, lipid profile and free fatty acids (FFA) were measured. The placental TG content was measured. Differential placental expressions of proteins; phosphatidylinositol-3-kinase (PI3K) p85α, PI3K p110α,liver X receptor alpha (LXRα), sterol regulatory element binding protein1(SREBP1), fatty acid synthase (FAS), stearyl CoA desaturase1 (SCD1), lipoprotein lipase (LPL),Peroxisome proliferator-activated receptor (PPAR)α and PPARγ were analysed by western blotting and immunohistochemistry. Results Placental protein expressions of PI3K p110α, LXRα, FAS, SCD1, and LPL were found to be significantly higher, whereas PPARα and PPARγ were lower in GDM women compared with CPW. The placental TG content and cord plasma FFA were increased in GDM women compared with CPW. The placental TG content positively correlated with Ponderal index of GDM new-borns. Conclusion Differential expressions of placental proteins related to lipid metabolism in GDM might have led to placental TG accumulation. This might have contributed to the fetal overgrowth in GDM.


Sign in / Sign up

Export Citation Format

Share Document