Hepatic fatty acid synthase gene transcription is induced by a dietary copper deficiency

1997 ◽  
Vol 272 (6) ◽  
pp. E1124-E1129 ◽  
Author(s):  
J. Wilson ◽  
S. Kim ◽  
K. G. Allen ◽  
R. Baillie ◽  
S. D. Clarke

A dietary copper (Cu) deficiency is associated with a twofold increase in hepatic fatty acid biosynthesis. We hypothesized that the induction of hepatic lipogenesis associated with a dietary Cu deficiency reflected an enhanced expression of genes encoding lipogenic enzymes, i.e., fatty acid synthase (FAS). Male weanling rats were pair-meal fed for 42 days a high-sucrose diet that was Cu deficient (CuD; 0.7 microgram Cu/g) or Cu adequate (CuA; 5.0 micrograms Cu/g). The CuD diet increased FAS enzymatic activity twofold (P < 0.05). This rise in enzymatic activity was accompanied by a threefold increase in FAS mRNA and a 2.5-fold increase in FAS gene transcription (P < 0.05). Neither the mRNA abundance nor the rate of gene transcription for phosphoenolpyruvate carboxykinase or beta-actin was affected by the CuD diet. The induction of FAS gene transcription was associated with a 65-85% increase in hepatic reduced glutathione (GSH; P < 0.05). When hepatic GSH synthesis was suppressed by treating CuD rats with L-buthionine sulfoximine, the induction of FAS expression was completely prevented. Similarly, feeding N-acetylcysteine to CuA rats increased hepatic GSH levels 2.5-fold, and this was accompanied by a significant induction in FAS expression. These data indicate that the increase in hepatic lipogenesis associated with a Cu deficiency reflects an induction in hepatic lipogenic gene transcription (i.e., FAS) and that the rate of gene transcription may be dependent on hepatic thiol redox.

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3656
Author(s):  
Dayoun Lee ◽  
Youngji Han ◽  
Eun-Young Kwon ◽  
Myung-Sook Choi

d-allulose is an uncommon sugar that provides almost no calories when consumed. Its sweetness is 70% that of sucrose. d-allulose is a metabolic regulator of glucose and lipid metabolism. However, few reports concerning its effect on diabetes and related metabolic disturbances in db/db mice are available. In this study, we evaluated d-allulose’s effect on hyperglycemia, hyperinsulinemia, diabetes and inflammatory responses in C57BL/KsJ-db/db mice. Mice were divided into normal diet, erythritol supplemented (5% w/w), and d-allulose supplemented (5% w/w) groups. Blood glucose and plasma glucagon levels and homeostatic model assessment (HOMA-IR) were significantly lower in the d-allulose group than in the normal diet group, and plasma insulin level was significantly increased. Further, d-allulose supplement significantly increased hepatic glucokinase activity and decreased hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activity. Expression of glucose transporter 4, insulin receptor substrate 1, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha and AKT serine/threonine kinase 2 were also upregulated by d-allulose supplement in adipocyte and muscle. Finally, d-allulose effectively lowered plasma and hepatic triglyceride and free fatty acid levels, and simultaneously reduced hepatic fatty acid oxidation and carnitine palmitoyl transferase activity. These changes are likely attributable to suppression of hepatic fatty acid synthase and glucose-6-phosphate dehydrogenase activity. Notably, d-allulose also reduced pro-inflammatory adipokine and cytokine levels in plasma. Our results indicate that d-allulose is an effective sugar substitute for improving lipid and glucose metabolism.


1996 ◽  
Vol 16 (2) ◽  
pp. 151-158 ◽  
Author(s):  
S S Donkin ◽  
A D McNall ◽  
B S Swencki ◽  
J L Peters ◽  
T D Etherton

ABSTRACT The present study was conducted to determine the chronic effects of porcine growth hormone administration on fatty acid synthase (FAS) mRNA abundance and gene transcription in growing rats. Growth hormone treatment increased growth rate approximately 27% (P<0·01). Porcine growth hormone decreased FAS mRNA levels by 55%. The reduction in FAS mRNA was due to a marked decrease in transcription of the FAS gene (decreased by 80%). In contrast, porcine growth hormone did not affect mRNA abundance or transcription rate of another insulin-regulated gene, phosphoenolpyruvate carboxykinase. In summary, our results have established that chronic treatment with growth hormone decreases FAS mRNA by decreasing the transcription rate of the gene. Furthermore, they suggest that the effects of growth hormone are specific and are not mediated by general changes in insulin-responsive gene expression in liver.


2021 ◽  
Vol 22 (11) ◽  
pp. 5951
Author(s):  
Xiaofei Zhou ◽  
Xiaoyu Ling ◽  
Huijuan Guo ◽  
Keyan Zhu-Salzman ◽  
Feng Ge ◽  
...  

Bacterial symbionts associated with insects are often involved in host development and ecological adaptation. Serratia symbiotica, a common facultative endosymbiont harbored in pea aphids, improves host fitness and heat tolerance, but studies concerning the nutritional metabolism and impact on the aphid host associated with carrying Serratia are limited. In the current study, we showed that Serratia-infected aphids had a shorter nymphal developmental time and higher body weight than Serratia-free aphids when fed on detached leaves. Genes connecting to fatty acid biosynthesis and elongation were up-regulated in Serratia-infected aphids. Specifically, elevated expression of fatty acid synthase 1 (FASN1) and diacylglycerol-o-acyltransferase 2 (DGAT2) could result in accumulation of myristic acid, palmitic acid, linoleic acid, and arachidic acid in fat bodies. Impairing fatty acid synthesis in Serratia-infected pea aphids either by a pharmacological inhibitor or through silencing FASN1 and DGAT2 expression prolonged the nymphal growth period and decreased the aphid body weight. Conversely, supplementation of myristic acid (C14:0) to these aphids restored their normal development and weight gain. Our results indicated that Serratia promoted development and growth of its aphid host through enhancing fatty acid biosynthesis. Our discovery has shed more light on nutritional effects underlying the symbiosis between aphids and facultative endosymbionts.


2018 ◽  
Vol 475 (23) ◽  
pp. 3861-3873 ◽  
Author(s):  
Fuyuan Jing ◽  
Marna D. Yandeau-Nelson ◽  
Basil J. Nikolau

In plants and bacteria that use a Type II fatty acid synthase, isozymes of acyl-acyl carrier protein (ACP) thioesterase (TE) hydrolyze the thioester bond of acyl-ACPs, terminating the process of fatty acid biosynthesis. These TEs are therefore critical in determining the fatty acid profiles produced by these organisms. Past characterizations of a limited number of plant-sourced acyl-ACP TEs have suggested a thiol-based, papain-like catalytic mechanism, involving a triad of Cys, His, and Asn residues. In the present study, the sequence alignment of 1019 plant and bacterial acyl-ACP TEs revealed that the previously proposed Cys catalytic residue is not universally conserved and therefore may not be a catalytic residue. Systematic mutagenesis of this residue to either Ser or Ala in three plant acyl-ACP TEs, CvFatB1 and CvFatB2 from Cuphea viscosissima and CnFatB2 from Cocos nucifera, resulted in enzymatically active variants, demonstrating that this Cys residue (Cys348 in CvFatB2) is not catalytic. In contrast, the multiple sequence alignment, together with the structure modeling of CvFatB2, suggests that the highly conserved Asp309 and Glu347, in addition to previously proposed Asn311 and His313, may be involved in catalysis. The substantial loss of catalytic competence associated with site-directed mutants at these positions confirmed the involvement of these residues in catalysis. By comparing the structures of acyl-ACP TE and the Pseudomonas 4-hydroxybenzoyl-CoA TE, both of which fold in the same hotdog tertiary structure and catalyze the hydrolysis reaction of thioester bond, we have proposed a two-step catalytic mechanism for acyl-ACP TE that involves an enzyme-bound anhydride intermediate.


2018 ◽  
Vol 6 (6) ◽  
pp. 1657-1663
Author(s):  
Ryoichi Izuchi ◽  
Tomoko Ishijima ◽  
Shinji Okada ◽  
Keiko Abe ◽  
Yuji Nakai

2020 ◽  
Vol 117 (38) ◽  
pp. 23557-23564
Author(s):  
Alex Ruppe ◽  
Kathryn Mains ◽  
Jerome M. Fox

Cells build fatty acids with biocatalytic assembly lines in which a subset of enzymes often exhibit overlapping activities (e.g., two enzymes catalyze one or more identical reactions). Although the discrete enzymes that make up fatty acid pathways are well characterized, the importance of catalytic overlap between them is poorly understood. We developed a detailed kinetic model of the fatty acid synthase (FAS) ofEscherichia coliand paired that model with a fully reconstituted in vitro system to examine the capabilities afforded by functional redundancy in fatty acid synthesis. The model captures—and helps explain—the effects of experimental perturbations to FAS systems and provides a powerful tool for guiding experimental investigations of fatty acid assembly. Compositional analyses carried out in silico and in vitro indicate that FASs with multiple partially redundant enzymes enable tighter (i.e., more independent and/or broader range) control of distinct biochemical objectives—the total production, unsaturated fraction, and average length of fatty acids—than FASs with only a single multifunctional version of each enzyme (i.e., one enzyme with the catalytic capabilities of two partially redundant enzymes). Maximal production of unsaturated fatty acids, for example, requires a second dehydratase that is not essential for their synthesis. This work provides a kinetic, control-theoretic rationale for the inclusion of partially redundant enzymes in fatty acid pathways and supplies a valuable framework for carrying out detailed studies of FAS kinetics.


Sign in / Sign up

Export Citation Format

Share Document