scholarly journals Is It Conjugated or Not? The Theoretical and Experimental Electron Density Map of Bonding in p-CH3CH2COC6H4-C≡C-C≡C-p-C6H4COCH3CH2

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4388 ◽  
Author(s):  
Przemysław Starynowicz ◽  
Sławomir Berski ◽  
Nurbey Gulia ◽  
Karolina Osowska ◽  
Tadeusz Lis ◽  
...  

The electron density of p-CH3CH2COC6H4-C≡CC≡C-p-C6H4COCH3CH2 has been investigated on the basis of single-crystal X-ray diffraction data collected to high resolution at 100 K and from theoretical calculations. An analysis of the X-ray data of the diyne showed interesting “liquidity” of electron distribution along the carbon chain compared to 1,2-diphenylacetylene. These findings are compatible with the results of topological analysis of Electron Localization Function (ELF), which has also revealed a larger (than expected) concentration of the electron density at the single bonds. Both methods indicate a clear π-type or “banana” character of a single bond and a significant distortion from the typical conjugated structure of the bonding in the diyne with a small contribution of cumulenic structures.

2005 ◽  
Vol 61 (4) ◽  
pp. 443-448 ◽  
Author(s):  
S. Scheins ◽  
M. Messerschmidt ◽  
P. Luger

The electron density distribution of morphine hydrate has been determined from high-resolution single-crystal X-ray diffraction measurements at 25 K. A topological analysis was applied and, in order to analyze the submolecular transferability based on an experimental electron density, a partitioning of the molecule into atomic regions was carried out, making use of Bader's zero-flux surfaces to yield atomic volumes and charges. The properties obtained were compared with the theoretical calculations of smaller fragment molecules, from which the complete morphine molecule can be reconstructed, and with theoretical studies of another opiate, Oripavine PEO, reported in the literature.


Author(s):  
Chinnasamy Kalaiarasi ◽  
Mysore S Pavan ◽  
Poomani Kumaradhas

An experimental charge density distribution of 2-nitroimidazole was determined from high-resolution X-ray diffraction and the Hansen–Coppens multipole model. The 2-nitroimidazole compound was crystallized and a high-angle X-ray diffraction intensity data set has been collected at low temperature (110 K). The structure was solved and further, an aspherical multipole model refinement was performed up to octapole level; the results were used to determine the structure, bond topological and electrostatic properties of the molecule. In the crystal, the molecule exhibits a planar structure and forms weak and strong intermolecular hydrogen-bonding interactions with the neighbouring molecules. The Hirshfeld surface of the molecule was plotted, which explores different types of intermolecular interactions and their strength. The topological analysis of electron density at the bond critical points (b.c.p.) of the molecule was performed, from that the electron density ρbcp(r) and the Laplacian of electron density ∇2ρbcp(r) at the b.c.p.s of the molecule have been determined; these parameters show the charge concentration/depletion of the nitroimidazole bonds in the crystal. The electrostatic parameters like atomic charges and the dipole moment of the molecule were calculated. The electrostatic potential surface of the molecule has been plotted, and it displays a large electronegative region around the nitro group. All the experimental results were compared with the corresponding theoretical calculations performed usingCRYSTAL09.


Nature ◽  
1987 ◽  
Vol 329 (6135) ◽  
pp. 178-181 ◽  
Author(s):  
Janos Hajdu ◽  
Pella A. Machin ◽  
John W. Campbell ◽  
Trevor J. Greenhough ◽  
Ian J. Clifton ◽  
...  

1996 ◽  
Vol 74 (6) ◽  
pp. 1145-1161 ◽  
Author(s):  
Pietro Roversi ◽  
Felicita Merati ◽  
Riccardo Destro ◽  
Mario Barzaghi

For the fungal metabolite citrinin, C13H14O5, the total experimental electron distribution ρ(r) and its Laplacian [Formula: see text] have been obtained from an extensive set (36 564 measurements) of single-crystal X-ray diffracted intensities at a temperature of 19 ± 2 K. Relevant steps in data collection and processing are reported. The resulting 7698 independent intensity data have been analysed with a multipole (pseudoatoms) formalism. The topological properties of ρ(r) have been determined according to the quantum theory of atoms in molecules. CC and CO bond path lengths have been obtained by numerical integration; their values are found to be well correlated with those of the electron density at the bond critical points. Topological features have been used to characterize the extension of the conjugated system of the molecule, and to confirm the stability of its rings, particularly the two formed by intramolecular H bonds. Maps of [Formula: see text] are presented, showing details in the valence charge distribution and providing a very sensitive tool for analysing dependence of the density on the model adopted to interpret X-ray data. The known chemical reactivity of the molecule towards nucleophiles at a Csp2 atom is confirmed by the shape of the molecular reactive surface (the zero envelope of [Formula: see text]). Key words: experimental electron density, low-temperature X-ray diffraction, topological analysis, Laplacian of ρ.


2017 ◽  
Vol 24 (5) ◽  
pp. 1024-1038 ◽  
Author(s):  
Yuki Sekiguchi ◽  
Saki Hashimoto ◽  
Amane Kobayashi ◽  
Tomotaka Oroguchi ◽  
Masayoshi Nakasako

Coherent X-ray diffraction imaging (CXDI) is a technique for visualizing the structures of non-crystalline particles with size in the submicrometer to micrometer range in material sciences and biology. In the structural analysis of CXDI, the electron density map of a specimen particle projected along the direction of the incident X-rays can be reconstructed only from the diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction, relying entirely on the computational procedure, sometimes fails because diffraction patterns miss the data in small-angle regions owing to the beam stop and saturation of the detector pixels, and are modified by Poisson noise in X-ray detection. To date, X-ray free-electron lasers have allowed us to collect a large number of diffraction patterns within a short period of time. Therefore, the reconstruction of correct electron density maps is the bottleneck for efficiently conducting structure analyses of non-crystalline particles. To automatically address the correctness of retrieved electron density maps, a data analysis protocol to extract the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a single diffraction pattern is proposed. Through monitoring the variations of the phase values during PR calculations, the tendency for the PR calculations to succeed when the retrieved phase sets converged on a certain value was found. On the other hand, if the phase set was in persistent variation, the PR calculation tended to fail to yield the correct electron density map. To quantify this tendency, here a figure of merit for the variation of the phase values during PR calculation is introduced. In addition, a PR protocol to evaluate the similarity between a map of the highest figure of merit and other independently reconstructed maps is proposed. The protocol is implemented and practically examined in the structure analyses for diffraction patterns from aggregates of gold colloidal particles. Furthermore, the feasibility of the protocol in the structure analysis of organelles from biological cells is examined.


2016 ◽  
Vol 23 (1) ◽  
pp. 312-323 ◽  
Author(s):  
Yuki Sekiguchi ◽  
Tomotaka Oroguchi ◽  
Masayoshi Nakasako

Coherent X-ray diffraction imaging (CXDI) is one of the techniques used to visualize structures of non-crystalline particles of micrometer to submicrometer size from materials and biological science. In the structural analysis of CXDI, the electron density map of a sample particle can theoretically be reconstructed from a diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction is difficult because diffraction patterns are affected by Poisson noise and miss data in small-angle regions due to the beam stop and the saturation of detector pixels. In contrast to X-ray protein crystallography, in which the phases of diffracted waves are experimentally estimated, phase retrieval in CXDI relies entirely on the computational procedure driven by the PR algorithms. Thus, objective criteria and methods to assess the accuracy of retrieved electron density maps are necessary in addition to conventional parameters monitoring the convergence of PR calculations. Here, a data analysis scheme, named ASURA, is proposed which selects the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a diffraction pattern. Each electron density map composed ofJpixels is expressed as a point in aJ-dimensional space. Principal component analysis is applied to describe characteristics in the distribution of the maps in theJ-dimensional space. When the distribution is characterized by a small number of principal components, the distribution is classified using thek-means clustering method. The classified maps are evaluated by several parameters to assess the quality of the maps. Using the proposed scheme, structure analysis of a diffraction pattern from a non-crystalline particle is conducted in two stages: estimation of the overall shape and determination of the fine structure inside the support shape. In each stage, the most accurate and probable density maps are objectively selected. The validity of the proposed scheme is examined by application to diffraction data that were obtained from an aggregate of metal particles and a biological specimen at the XFEL facility SACLA using custom-made diffraction apparatus.


1996 ◽  
Vol 74 (6) ◽  
pp. 1171-1179 ◽  
Author(s):  
Vladimir G. Tsirelson

Methods of topological analysis of the experimental electron density reconstructed from X-ray diffraction data are described. Their advantages and drawbacks are discussed and the results for organic and inorganic crystalline solids are presented. Key words: topological analysis, experimental electron density.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4227
Author(s):  
Alessandro Cossard ◽  
Silvia Casassa ◽  
Carlo Gatti ◽  
Jacques K. Desmarais ◽  
Alessandro Erba

The chemistry of f-electrons in lanthanide and actinide materials is yet to be fully rationalized. Quantum-mechanical simulations can provide useful complementary insight to that obtained from experiments. The quantum theory of atoms in molecules and crystals (QTAIMAC), through thorough topological analysis of the electron density (often complemented by that of its Laplacian) constitutes a general and robust theoretical framework to analyze chemical bonding features from a computed wave function. Here, we present the extension of the Topond module (previously limited to work in terms of s-, p- and d-type basis functions only) of the Crystal program to f- and g-type basis functions within the linear combination of atomic orbitals (LCAO) approach. This allows for an effective QTAIMAC analysis of chemical bonding of lanthanide and actinide materials. The new implemented algorithms are applied to the analysis of the spatial distribution of the electron density and its Laplacian of the cesium uranyl chloride, Cs2UO2Cl4, crystal. Discrepancies between the present theoretical description of chemical bonding and that obtained from a previously reconstructed electron density by experimental X-ray diffraction are illustrated and discussed.


Sign in / Sign up

Export Citation Format

Share Document