bond path
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2241
Author(s):  
Mirosław Jabłoński

Using a fairly structurally flexible and, therefore, very suitable for this type of research, superphane molecule, we demonstrate that the inclusion of a noble gas atom (Ng = He, Ne, Ar, and Kr) inside it and, thus, the formation of the Ng@superphane endohedral complex, leads to its ‘swelling’. Positive values of both the binding and strain energies prove that encapsulation and in turn ‘swelling’ of the superphane molecule is energetically unfavorable and that the Ng⋯C interactions in the interior of the cage are destabilizing, i.e., repulsive. Additionally, negative Mayer Bond Orders indicate the antibonding nature of Ng⋯C contacts. This result in combination with the observed Ng⋯C bond paths shows that the presence of a bond path in the molecular graph does not necessarily prove interatomic stabilization. It is shown that the obtained conclusions do not depend on the computational methodology, i.e., the method and the basis set used. However, on the contrary, the number of bond paths may depend on the methodology. This is yet another disadvantageous finding that does not favor the treatment of bond paths on molecular graphs as indicators of chemical bonds. The Kr@superphane endohedral complex features one of the longest C–C bonds ever reported (1.753 Å).


Author(s):  
Zi Li ◽  
Yong Yang ◽  
Xing Nie ◽  
Tianlv Xu ◽  
Steven Kirk ◽  
...  

We seek to determine the two-way transfer of chemical character due to the coupling occurring between hydrogen-bonds and covalent-bonds known to account for the unusual strength of hydrogen-bonds in water. We have provided a vector-based quantification of the chemical character of uncoupled hydrogen-bonds and covalent-bonds and then determined the effects of two-way coupling consistent with the total local energy density H(rb) < 0 for hydrogen-bonds. We have calculated the precessions Kʹ of the eigenvectors around the bond-path for the Ehrenfest Force F(r) and compared with the corresponding QTAIM Kʹ. In doing so we explain why the Ehrenfest Force F(r) provides insights into the coupling between the hydrogen and covalent bonds whilst QTAIM cannot. Conditions for favorable transfer of electron momentum from the hydrogen atom of a sigma bond to the hydrogen-bond are found, with excellent agreement with the hydrogen-bond BCP and covalent-bond BCP separations providing the theoretical bounds for coupling.


2021 ◽  
Vol 766 ◽  
pp. 138339
Author(s):  
Binod Mahara ◽  
Alireza Azizi ◽  
Yong Yang ◽  
Michael Filatov ◽  
Steven R. Kirk ◽  
...  

2021 ◽  
Vol 60 (3) ◽  
pp. 1846-1856
Author(s):  
Brent Lindquist-Kleissler ◽  
John S. Wenger ◽  
Timothy C. Johnstone

2020 ◽  
Vol 17 (2) ◽  
pp. 0488
Author(s):  
Muhsen Al-Ibadi et al.

Ruthenium-Ruthenium and Ruthenium–ligand interactions in the triruthenium "[Ru3(μ-H)(μ3-κ2-Hamphox-N,N)(CO)9]" cluster are studied at DFT level of theory. The topological indices are evaluated in term of QTAIM (quantum theory of atoms in molecule). The computed topological parameters are in agreement with related transition metal complexes documented in the research papers. The QTAIM analysis of the bridged core part, i.e., Ru3H, analysis shows that there is no bond path and bond critical point (chemical bonding) between Ru(2) and Ru(3). Nevertheless, a non-negligible delocalization index for this non-bonding interaction is calculated. The interaction in the core Ru3H can be described as a (4centre–4electron) type. For Ru-N (oxazoline ring) bond, the calculated topological data propose a pure σ-bond. The computed topological parameters of oxazoline ligand reveal the presence of slightly some double bond characters within ligand ring.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2875 ◽  
Author(s):  
Shuman Li ◽  
Tianlv Xu ◽  
Tanja van Mourik ◽  
Herbert Früchtl ◽  
Steven R. Kirk ◽  
...  

Next-generation quantum theory of atoms in molecules (QTAIM) was used to investigate the competition between hydrogen bonding and halogen bonding for the recently proposed (Y = Br, I, At)/halogenabenzene/NH3 complex. Differences between using the SR-ZORA Hamiltonian and effective core potentials (ECPs) to account for relativistic effects with increased atomic mass demonstrated that next-generation QTAIM is a much more responsive tool than conventional QTAIM. Subtle details of the competition between halogen bonding and hydrogen bonding were observed, indicating a mixed chemical character shown in the 3-D paths constructed from the bond-path framework set B. In addition, the use of SR-ZORA reduced or entirely removed spurious features of B on the site of the halogen atoms.


2018 ◽  
Vol 713 ◽  
pp. 125-131 ◽  
Author(s):  
Wei Jie Huang ◽  
Tianlv Xu ◽  
Steven R. Kirk ◽  
Michael Filatov ◽  
Samantha Jenkins

2018 ◽  
Vol 39 (27) ◽  
pp. 2273-2282 ◽  
Author(s):  
Dirkie Myburgh ◽  
Stuart von Berg ◽  
Jan Dillen
Keyword(s):  

2018 ◽  
Vol 47 (41) ◽  
pp. 14774-14784 ◽  
Author(s):  
Yi-Chun Chen ◽  
Jo-Yu Tung ◽  
Ta-Kang Liu ◽  
Wei-Joe Tsai ◽  
Hsiang-Yin Lin ◽  
...  

The bond path for the η1-H(17)–C(17)⋯Hg agostic interactions in 4–9 was a through-space interaction [Hg⋯C(17)] and a through-bond interaction [Hg⋯H(17)].


Author(s):  
Marcin Stachowicz ◽  
Maura Malinska ◽  
Jan Parafiniuk ◽  
Krzysztof Woźniak

On the basis of a multipole refinement of single-crystal X-ray diffraction data collected using an Ag source at 90 K to a resolution of 1.63 Å−1, a quantitative experimental charge density distribution has been obtained for fluorite (CaF2). The atoms-in-molecules integrated experimental charges for Ca2+and F−ions are +1.40 e and −0.70 e, respectively. The derived electron-density distribution, maximum electron-density paths, interaction lines and bond critical points along Ca2+...F−and F−...F−contacts revealed the character of these interactions. The Ca2+...F−interaction is clearly a closed shell and ionic in character. However, the F−...F−interaction has properties associated with the recently recognized type of interaction referred to as `charge-shift' bonding. This conclusion is supported by the topology of the electron localization function and analysis of the quantum theory of atoms in molecules and crystals topological parameters. The Ca2+...F−bonded radii – measured as distances from the centre of the ion to the critical point – are 1.21 Å for the Ca2+cation and 1.15 Å for the F−anion. These values are in a good agreement with the corresponding Shannon ionic radii. The F−...F−bond path and bond critical point is also found in the CaF2crystal structure. According to the quantum theory of atoms in molecules and crystals, this interaction is attractive in character. This is additionally supported by the topology of non-covalent interactions based on the reduced density gradient.


Sign in / Sign up

Export Citation Format

Share Document