scholarly journals Rutin-Loaded Solid Lipid Nanoparticles: Characterization and In Vitro Evaluation

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1039
Author(s):  
Federica De Gaetano ◽  
Maria Chiara Cristiano ◽  
Valentina Venuti ◽  
Vincenza Crupi ◽  
Domenico Majolino ◽  
...  

This study was aimed at preparing and characterizing solid lipid nanoparticles loading rutin (RT-SLNs) for the treatment of oxidative stress-induced diseases. Phospholipon 80H® as a solid lipid and Polysorbate 80 as surfactant were used for the SLNs preparation, using the solvent emulsification/diffusion method. We obtained spherical RT-SLNs with low sizes, ranging from 40 to 60 nm (hydrodynamic radius) for the SLNs prepared starting from 2% and 5% (w/w) theoretical amount. All prepared formulations showed negative zeta-potential values. RT was efficiently encapsulated within SLNs, obtaining high encapsulation efficiency and drug content percentages, particularly for SLNs prepared with a 5% theoretical amount of RT. In vitro release profiles and analysis of the obtained data applying different kinetic models revealed Fickian diffusion as the main mechanism of RT release from the SLNs. The morphology of RT-SLNs was characterized by scanning electron microscopy (SEM), whereas the interactions between RT and the lipid matrix were investigated by Raman spectroscopy, evidencing spectral modifications of characteristic bands of RT due to the establishment of new interactions. Finally, antioxidant activity assay on human glioblastoma astrocytoma (U373) culture cells showed a dose-dependent activity for RT-SLNs, particularly at the highest assayed dose (50 μM), whereas the free drug showed the lesser activity.

Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


2020 ◽  
Vol 8 (6) ◽  
pp. 495-510
Author(s):  
Manoj Kumar ◽  
Garima Sharma ◽  
Dinesh Singla ◽  
Sukhjeet Singh ◽  
Vandita Kakkar ◽  
...  

Background:: All-trans retinoic acid (ATRA) is widely employed in the treatment of various proliferative and inflammatory diseases. However, its therapeutic efficacy is imperiled due to its poor solubility and stability. Latter was surmounted by its incorporation into a solid matrix of lipidic nanoparticles (SLNs). Methods:: ATRA loaded SLNs (ATRA-SLNs) were prepared using a novel microemulsification technique (USPTO 9907758) and an optimal composition and were characterized in terms of morphology, differential scanning calorimetry (DSC), and powder X-ray diffraction studies (PXRD). In vitro release, oral plasma pharmacokinetics (in rats) and stability studies were also done. Results:: Rod-shaped ATRA-SLNs could successfully incorporate 3.7 mg/mL of ATRA, increasing its solubility (from 4.7 μg/mL) by 787 times, having an average particle size of 131.30 ± 5.0 nm and polydispersibility of 0.283. PXRD, DSC, and FTIR studies confirmed the formation of SLNs. Assay/total drug content and entrapment efficiency of ATRA-SLNs was 92.50 ± 2.10% and 84.60 ± 3.20% (n=6), respectively, which was maintained even on storage for one year under refrigerated conditions as an aqueous dispersion. In vitro release in 0.01 M phosphate buffer (pH 7.4) with 3% tween 80 was extended 12 times from 2h for free ATRA to 24 h for ATRA-SLNs depicting Korsmeyer Peppas release. Oral administration in rats showed 35.03 times enhanced bioavailability for ATRA-SLNs. Conclusion:: Present work reports preparation and evaluation of bioenhanced ATRA-SLNs containing a high concentration of ATRA (>15 times than that reported by others). Latter is attributed to the novel preparation process and intelligent selection of components. Lay Summary: All-trans retinoic acid (ATRA) shows an array of pharmacological activities but its efficacy is limited due to poor solubility, stability and side effects. In present study its solubility and efficacy is improved by 787 and 35.5 times, respectively upon incorporation into solid lipid nanoparticles (ATRA-SLNs). Latter extended its release by 12 times and provided stability for at least a year under refrigeration. A controlled and sustained release will reduce dose related side effects. ATRA-SLNs reported presently can thus be used in treatment /prophylaxis of disorders like cancers, tuberculosis, age related macular degeneration and acne and as an immune-booster.


2019 ◽  
Vol 9 (1) ◽  
pp. 76-85 ◽  
Author(s):  
R. Nithya ◽  
K. Siram ◽  
R. Hariprasad ◽  
H. Rahman

Background: Paclitaxel (PTX) is a potent anticancer drug which is highly effective against several cancers. Solid lipid nanoparticles (SLNs) loaded with anticancer drugs can enhance its toxicity against tumor cells at low concentrations. Objective: To develop and characterize SLNs of PTX (PSLN) to enhance its toxicity against cancerous cells. Method: The solubility of PTX was screened in various lipids. Solid lipid nanoparticles of PTX (PSLN) were developed by hot homogenization method using Cutina HR and Gelucire 44/14 as lipid carriers and Solutol HS 15 as a surfactant. PSLNs were characterized for size, morphology, zeta potential, entrapment efficiency, physical state of the drug and in vitro release profile in 7.4 pH phosphate buffer saline (PBS). The ability of PTX to enhance toxicity towards cancerous cells was tested by performing cytoxicity assay in MCF7 cell line. Results: Solubility studies of PTX in lipids indicated better solubility when Cutina HR and Gelucire 44/14 were used. PSLNs were found to possess a neutral zeta potential with a size range of 155.4 ± 10.7 nm to 641.9 ± 4.2 nm. In vitro release studies showed a sustained release profile for PSLN over a period of 48 hours. SLNs loaded with PTX were found to be more toxic in killing MCF7 cells at a lower concentration than the free PTX.


2020 ◽  
Vol 13 (9) ◽  
pp. 255
Author(s):  
Md. Khalid Anwer ◽  
Mohammed Muqtader Ahmed ◽  
Mohammed F. Aldawsari ◽  
Saad Alshahrani ◽  
Farhat Fatima ◽  
...  

The aim of the current study was to evaluate the therapeutics potential of eluxadoline (ELX) loaded solid lipid nanoparticles (SLNs) in ulcerative colitis. ELX loaded SLNs were prepared using three different lipids according to the solvent emulsification technique. The optimization of prepared SLNs (F1-F3) were carried out based on size, PDI, zeta potential, percent drug entrapment (%EE), and loading (%DL). The lipid (stearic acid) based SLNs (F2) was optimized with particle size (266.0 ± 6.4 nm), PDI (0.217 ± 0.04), zeta potential (31.2 ± 5.19 mV), EE (65.0 ± 4.8%), and DL (4.60 ± 0.8%). The optimized SLNs (F2) was further evaluated by DSC, FTIR, SEM, in vitro release, and stability studies, which confirmed the successful encapsulation of ELX in SLNs. The efficacy of optimized SLNs (F2) in comparison to the pure ELX drug was assessed in acetic acid induced colitis rat models. It was observed that the delivery of ELX by SLNs alleviated the induced acetic acid colitis significantly. Thus, ELX loaded SLNs delivery to the colon has a significant potential to be developed for the treatment of ulcerative colitis.


2021 ◽  
pp. 1-12
Author(s):  
Irshadullah ◽  
Shefaat Ullah Shah ◽  
Muhammad Khalid Khan ◽  
Kifayat Ullah Shah ◽  
Barkat Ali Khan

Chitosan a poly-(D) glucosamine is a polysaccharide made by treating shrimp and other crustacean shells with the alkali sodium hydroxide. It is a hydrophilic polymer that helps to retain the drug inside the solid lipid nanoparticles (SLN’s) and prolongs the release of drug from the carrier system. The purpose of the study was to formulate Chitosan decorated SLN’s for the topical delivery of dexibuprofen by hot pressure homogenization technique. Blank SLN’s, drug loaded SLN’s and Chitosan decorated SLN’s were prepared. Particle size, zeta potential and PDI were determined. FTIR study was conducted to evaluate the compatibility of excipients with the active drug. Surface morphology of SLN’s was determined by field emission scanning electron microscope. Drug content and entrapment efficiency of SLN’s were determined using indirect method. In vitro release and ex vivo permeation study of SLN’s were carried out using Franz diffusion cell. The droplet size fell into the nano range i.e. 132±7 to 424±2 nm which is effective for topical drug delivery system. The PDI of formulations range from 0.21 to 0.42 which depicts the homogeneity of all the SLN’s formulations. Vibrational analysis indicates that there is no interaction between active drug and excipient used in the formulation. The surface morphology revealed the spherical shape of Chitosan decorated SLN’s. The in vitro release of formulations showed 79.91±1.07 to 89.94±1.8 % drug release. The drug permeation study showed high permeation of drug into the skin. The percent drug permeation ranges from 64.15±0.93 to 71.80±0.88% indicating good permeation of drug across the skin. Overall, SLN’s are an effective carrier for topical delivery of dexibuprofen and thus bypasses side effects associated with oral delivery.


Author(s):  
AMRUTHA U ◽  
SUSHMITHA B ◽  
SHAIK RUBINA ◽  
PADMINI IRIVENTI

Objective: The objective of the present study was to formulate and evaluate caffeine loaded solid lipid nanoparticles (SLNs) in the treatment of clinical mastitis. Methodology: These were prepared by homogenization technique using cholesterol, tween 80, and chloroform as excipients. Preformulation studies such as ultraviolet spectrophotometry, Fourier transform infrared (FTIR), and differential scanning calorimetry (DSC) were performed for the drug. Entrapment efficiency and in vitro dissolution studies were carried out for prepared SLN’s and the optimum formulation (F2) was taken for further studies such as FTIR, DSC, scanning electron microscopy, particle size, and zeta potential analysis. Results: Obtained results stated that prepared SLNs are roughly spherical in nature and are in nanorange. These were incorporated in Carbopol gel and further evaluation studies such as pH, spreadability, viscosity, homogeneity, and in vitro drug diffusion studies were carried out. All the results obtained state that prepared nanogel has shown sustained release of drug. The antimicrobial study was carried out using Staphylococcus aureus and it was confirmed by appearance of the zone of inhibition. Conclusion: Nanogel that contains Caffeine SLNs with 1:2 ratio drug:lipid has shown good in vitro release. Sustained release of Caffeine drug till 12 h was achieved by delivering it in the form of nanogel.


Author(s):  
B. SURENDRA ◽  
M. NAVEEN KUMAR ◽  
PADMINI IRIVENTI

Objective: The objective of the present study was to formulate and evaluate caffeine-loaded solid lipid nanoparticles (SLNs) in the treatment of clinical mastitis. Methods: These were prepared by homogenization technique using stearic acid, Tween 80, and chloroform as excipients. Pre-formulation studies such as UV spectrophotometry, Fourier transform infrared (FTIR), and differential scanning calorimetry (DSC) were performed for the drug. Entrapment efficiency and in vitro dissolution studies were carried out for prepared SLNs and the optimum formulation (F2) was taken for further studies such as FTIR, DSC, SEM, particle size, and zeta potential analysis. Results: Obtained results stated that prepared SLNs are roughly spherical in nature and are in nano range. These were incorporated in Carbopol gel and further evaluation studies such as pH, spreadability, viscosity, homogenicity, and in vitro drug diffusion studies were carried out. All the results stated that prepared nanogel has shown sustained release of drug. Antimicrobial study was carried out using Staphylococcus aureus and it was confirmed by the appearance of zone of inhibition. Conclusion: Nanogel that contains caffeine SLNs with 1:2 ratio drug:lipid has shown good in vitro release. Sustained release of caffeine drug till 12 h was achieved by delivering it in the form of nanogel.


Sign in / Sign up

Export Citation Format

Share Document