scholarly journals Triterpenes and Phenolic Compounds from the Fungus Fuscoporia torulosa: Isolation, Structure Determination, and Biological Activity

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1657
Author(s):  
Zoltán Béni ◽  
Miklós Dékány ◽  
András Sárközy ◽  
Annamária Kincses ◽  
Gabriella Spengler ◽  
...  

Investigation of the methanol extract of the poroid fungus Fuscoporia torulosa resulted in the isolation of a novel triterpene, fuscoporic acid (1), together with inoscavin A and its previously undescribed Z isomer (2 and 3), 3,4-dihydroxy-benzaldehide (4), osmundacetone (5), senexdiolic acid (6), natalic acid (7), and ergosta-7,22-diene-3-one (8). The structures of fungal compounds were determined on the basis of NMR and MS spectroscopic analyses, as well as molecular modeling studies. Compounds 1, 6–8 were examined for their antibacterial properties on resistant clinical isolates, and cytotoxic activity on human colon adenocarcinoma cell lines. Compound 8 was effective against Colo 205 (IC50 11.65 ± 1.67 µM), Colo 320 (IC50 8.43 ± 1.1 µM) and MRC-5 (IC50 7.92 ± 1.42 µM) cell lines. Potentially synergistic relationship was investigated between 8 and doxorubicin, which revealed a synergism between the examined compounds with a combination index (CI) at the 50% growth inhibition dose (ED50) of 0.521 ± 0.15. Several compounds (1 and 6–8) were tested for P-glycoprotein modulatory effect in Colo 320 resistant cancer cells, but none of the compounds proved to be effective in this assay. Fungal metabolites 2–5 were evaluated for their antioxidant activity using the oxygen radical absorbance capacity (ORAC) and DPPH assays. Compounds 4 and 5 were found to have a considerable antioxidant effect with EC50 0.25 ± 0.01 (DPPH) and 12.20 ± 0.92 mmol TE/g (ORAC). The current article provides valuable information on both the chemical and pharmacological profiles of Fuscoporia torulosa, paving the way for future studies with this species.

Author(s):  
Zoltán Béni ◽  
Miklós Dékány ◽  
András Sárközy ◽  
Annamáris Kincses ◽  
Gabriella Spengler ◽  
...  

Investigation of the methanol extract of the poroid fungus Fuscoporia torulosa resulted in the isolation of a novel triterpene, fuscoporic acid (1) together with inoscavin A and its previously undescribed Z isomer (2 and 3), 3,4-dihydroxy-benzaldehide (4), osmundacetone (5), senexdiolic acid (6), natalic acid (7), and ergosta-7,22-diene-3-one (8). The structures of fungal compounds were determined on the basis of NMR and MS spectroscopic analysis, as well as molecular modelling studies. Compounds 1, 6-8 were examined for their antibacterial properties on resistant clinical isolates, and cytotoxic activity on human colon adenocarcinoma cell lines. Compound 8 was effective against Colo 205 (IC50 11.65±1.67 µM), Colo 320 (IC50 8.43±1.1 µM) and MRC-5 (IC50 7.92±1.42 µM) cell lines. Potentially synergistic relationship was investigated between 8 and doxorubicin, which revealed a synergism between the examined compounds with a combination index (CI) at the 50% growth inhibition dose (ED50) of 0.521±0.15. Several compounds (1, and 6-8) were tested for P‐glycoprotein modulatory effect in Colo 320 resistant cancer cells, but none of the compounds proved to be effective in this assay. Fungal metabolites 2-5 were evaluated for their antioxidant activity using the oxygen radical absorbance capacity (ORAC) and DPPH assays. Compounds 4 and 5 proved to possess considerable antioxidant effect with EC50 0.25±0.01 (DPPH) and 12.20±0.92 mmol TE/g (ORAC). The current article provides valuable information on both chemical and pharmacological profiles of Fuscoporia torulosa, paving the way for future studies with this species.


2018 ◽  
Vol 18 (8) ◽  
pp. 1184-1196 ◽  
Author(s):  
Abdel-Ghany A. El-Helby ◽  
Helmy Sakr ◽  
Rezk R.A. Ayyad ◽  
Khaled El-Adl ◽  
Mamdouh M. Ali ◽  
...  

Background: Extensive studies were reported in the synthesis of several phthalazine derivatives as promising anticancer agents as potent VEGFR-2 inhibitors. Vatalanib (PTK787) was the first anilinophthalazine published derivative as a potent inhibitor of VEGFR. The discovery of vatalanib as a clinical candidate led to the design and synthesis of different anilinophthalazine derivatives as potent inhibitors for VEGFR-2. The objective of present research work is the synthesis of new agents with the same essential pharmacophoric features of the reported and clinically used VEGFR-2 inhibitors (e.g vatalanib and sorafenib). The main core of our molecular design rationale comprised bioisosteric modification strategies of VEGFR-2 inhibitors at four different positions. </P><P> Material and Methods: A correlation between structure and biological activity of our designed phthalazines was established using molecular docking and VEGFR-2 kinase assay. Results and Discussion: In view of their expected anticancer activity, novel triazolo[3,4-a]phthalazine derivatives 5-6a-o and 3-substituted-bis([1,2,4]triazolo)[3,4-a:4',3'-c]phthalazines 9a-b were designed, synthesized and evaluated for their anti-proliferative activity against two human tumor cell lines HCT-116 human colon adenocarcinoma and MCF-7 breast cancer. It was found that, compound 6o the most potent derivative against both HCT116 and MCF-7 cancer cell lines. Compounds 6o, 6m, 6d and 9b showed the highest anticancer activities against HCT116 human colon adenocarcinoma with IC50 of 7±0.06, 13±0.11, 15±0.14 and 23±0.22 µM respectively while compounds 6o, 6d, 6a and 6n showed the highest anticancer activities against MCF-7 breast cancer with IC50 of 16.98±0.15, 18.2±0.17, 57.54±0.53 and 66.45±0.67 µM respectively. Sorafenib as a highly potent VEGFR-2 inhibitor was used as a reference drug with IC50 of 5.47±0.3 and 7.26±0.3 µM respectively. Nine compounds were further evaluated for their VEGFR-2 inhibitory activity. Compounds 6o, 6m, 6d and 9b emerged as the most active counterparts against VEGFR-2 with IC50 values of 0.1±0.01, 0.15±0.02, 0.28±0.03 and 0.38±0.04 µM, respectively comparable to that of sorafenib (IC50 = 0.1±0.02) µM. Furthermore, molecular docking studies were carried out for all synthesized compounds to investigate their binding pattern and predict their binding affinities towards VEGFR-2 active site. In silico ADMET studies were calculated for the tested compounds. Most of our designed compounds exhibited good ADMET profile. Conclusion: The obtained results showed that, the most active compounds could be useful as a template for future design, optimization, adaptation and investigation to produce more potent and selective VEGFR-2 inhibitors with higher anticancer analogs.


2009 ◽  
Vol 66 (4) ◽  
pp. 765-771 ◽  
Author(s):  
Stefan Harmsen ◽  
I. Meijerman ◽  
C. L. Febus ◽  
R. F. Maas-Bakker ◽  
J. H. Beijnen ◽  
...  

1996 ◽  
Vol 226 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Marie Françoise Bernet-Camard ◽  
Marie Hélène Coconnier ◽  
Sylvie Hudault ◽  
Alain L. Servin

2001 ◽  
Vol 164 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Greogory Merritt ◽  
Elias T. Aliprandis ◽  
Francesco Prada ◽  
Basil Rigas ◽  
Khosrow Kashfi

2014 ◽  
Vol 9 (3) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Ewa Seweryn ◽  
Michał Glehsk ◽  
Kamila Środa-Pomianek ◽  
Ireneusz Ceremuga ◽  
Maciej Włodarczyk ◽  
...  

Four types of aescin that are available on the pharmaceutical market, β-aescin crystalline, β-aescin amorphous, β-aescin sodium and aescin polysulfate, have been analyzed for their cytotoxic effects on human colon adenocarcinoma (LoVo) and doxorubicin-resistant human colon adenocarcinoma cell lines (LoVo/Dx). Their cytotoxic activities were evaluated by sulforhodamine B (SRB) and methyl tetrazolium (MTT) assays. All four types of aescin exerted strong dose-dependent cytotoxicity to LoVo and, to a lesser degree, LoVo/Dx cell lines. The IC50 value for the LoVo/Dx cell line was higher, but still dose-dependent. Results from both assays demonstrated that β-aescin crystalline has the most cytotoxic activity toward human colon adenocarcinoma cell lines.


Sign in / Sign up

Export Citation Format

Share Document