scholarly journals Antiviral Properties of the NSAID Drug Naproxen Targeting the Nucleoprotein of SARS-CoV-2 Coronavirus

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2593
Author(s):  
Olivier Terrier ◽  
Sébastien Dilly ◽  
Andrés Pizzorno ◽  
Dominika Chalupska ◽  
Jana Humpolickova ◽  
...  

There is an urgent need for specific antiviral treatments directed against SARS-CoV-2 to prevent the most severe forms of COVID-19. By drug repurposing, affordable therapeutics could be supplied worldwide in the present pandemic context. Targeting the nucleoprotein N of the SARS-CoV-2 coronavirus could be a strategy to impede viral replication and possibly other essential functions associated with viral N. The antiviral properties of naproxen, a non-steroidal anti-inflammatory drug (NSAID) that was previously demonstrated to be active against Influenza A virus, were evaluated against SARS-CoV-2. Intrinsic fluorescence spectroscopy, fluorescence anisotropy, and dynamic light scattering assays demonstrated naproxen binding to the nucleoprotein of SARS-Cov-2 as predicted by molecular modeling. Naproxen impeded recombinant N oligomerization and inhibited viral replication in infected cells. In VeroE6 cells and reconstituted human primary respiratory epithelium models of SARS-CoV-2 infection, naproxen specifically inhibited viral replication and protected the bronchial epithelia against SARS-CoV-2-induced damage. No inhibition of viral replication was observed with paracetamol or the COX-2 inhibitor celecoxib. Thus, among the NSAID tested, only naproxen combined antiviral and anti-inflammatory properties. Naproxen addition to the standard of care could be beneficial in a clinical setting, as tested in an ongoing clinical study.

Author(s):  
Olivier Terrier ◽  
Sébastien Dilly ◽  
Andrés Pizzorno ◽  
Julien Henri ◽  
Francis Berenbaum ◽  
...  

AbstractThere is an urgent need for specific antiviral drugs directed against SARS-CoV-2 both to prevent the most severe forms of COVID-19 and to reduce viral excretion and subsequent virus dissemination; in the present pandemic context, drug repurposing is a priority. Targeting the nucleoprotein N of the SARS-CoV-2 coronavirus in order to inhibit its association with viral RNA could be a strategy to impeding viral replication and possibly other essential functions associated with viral N. The antiviral properties of naproxen, belonging to the NSAID family, previously demonstrated against Influenza A virus, were evaluated against SARS-CoV-2. Naproxen binding to the nucleoprotein of SARS-CoV2 was shown by molecular modeling. In VeroE6 cells and reconstituted human primary respiratory epithelium models of SARS-CoV-2 infection, naproxen inhibited viral replication and protected the bronchial epithelia against SARS-CoV-2 induced-damage. The benefit of naproxen addition to the standard of care is tested in an on-going clinical study.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11360
Author(s):  
Fahad Al-Hizab ◽  
Mahmoud Kandeel

Mycophenolate mofetil is an established anti-proliferative and immune-suppressive agent that minimizes the proliferation of inflammatory cells by interfering with nucleic acid synthesis. Herein, we report our discovery of the prostaglandin inhibiting properties of MMF, which offers new applications for the drug in the treatment of inflammatory diseases. The estimated values of IC50MMFCOX-1, IC50MMFCOX-2, and IC50MMF5-LOX were 5.53, 0.19, and 4.47 µM, respectively. In contrast, mycophenolic acid (MPA) showed slightly stronger inhibition: IC50MPACOX-1, IC50MPACOX-2, and IC50MPA5-LOX were 4.62, 0.14, and 4.49 µM, respectively. These results indicate that MMF and MPA are, respectively, 28.6 and 33 times more selective for cyclooxygenase-2 than for cyclooxygenase-1, which implies that MMF would have less impact on the gastric mucosa than most nonselective, nonsteroidal anti-inflammatory drugs. Furthermore, MMF provided dose-dependent relief of acute inflammation in the carrageenan-induced rat paw edema test, with results comparable to those of celecoxib and indomethacin. Molecular dynamics simulations indicated that the MMF bond with COX-2 was stable, as evidenced by a low root-mean-square deviation of atomic positions, complementary per-residue root-mean-square fluctuation, and 0–4 hydrogen bonds during the 50-ns simulation time. Therefore, MMF provides immune-suppressing, cyclooxygenase-inhibiting, and inflammation-relieving properties. Our results indicate that MMF can be 1) repositioned for inflammation treatment without the need for further expensive clinical trials, 2) used for local acute inflammations, and 3) used as a sparing agent for other steroid and non-steroid anti-inflammatory medications, especially in topical applications.


2013 ◽  
Vol 97 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Patchima Sithisarn ◽  
Martin Michaelis ◽  
Manfred Schubert-Zsilavecz ◽  
Jindrich Cinatl

2015 ◽  
Vol 90 (4) ◽  
pp. 1788-1801 ◽  
Author(s):  
Shoko Nakamura ◽  
Masayuki Horie ◽  
Tomo Daidoji ◽  
Tomoyuki Honda ◽  
Mayo Yasugi ◽  
...  

ABSTRACTInfluenza A virus (IAV) affects the upper and lower respiratory tracts and rapidly induces the expression of mucins, which are common O-glycosylated proteins, on the epithelial surfaces of the respiratory tract. Although mucin production is associated with the inhibition of virus transmission as well as characteristic clinical symptoms, little is known regarding how mucins are produced on the surfaces of respiratory epithelial cells and how they affect IAV replication. In this study, we found that two microRNAs (miRNAs), miR-17-3p and miR-221, which target GalNAc transferase 3 (GALNT3) mRNA, are rapidly downregulated in human alveolar basal epithelial cells during the early stage of IAV infection. We demonstrated that the expression of GALNT3 mRNA is upregulated in an IAV replication-dependent fashion and leads to mucin production in bronchial epithelial cells. A lectin microarray analysis revealed that the stable expression of GALNT3 by human alveolar basal epithelial cells induces mucin-type O-glycosylation modifications similar to those present in IAV-infected cells, suggesting that GALNT3 promotes mucin-type O-linked glycosylation in IAV-infected cells. Notably, analyses using short interfering RNAs and miRNA mimics showed that GALNT3 knockdown significantly reduces IAV replication. Furthermore, IAV replication was markedly decreased in embryonic fibroblast cells obtained fromgalnt3-knockout mice. Interestingly, IAV-infectedgalnt3-knockout mice exhibited high mortality and severe pathological alterations in the lungs compared to those of wild-type mice. Our results demonstrate not only the molecular mechanism underlying rapid mucin production during IAV infection but also the contribution of O-linked glycosylation to the replication and propagation of IAV in lung cells.IMPORTANCEViral infections that affect the upper or lower respiratory tracts, such as IAV, rapidly induce mucin production on the epithelial surfaces of respiratory cells. However, the details of how mucin-type O-linked glycosylation is initiated by IAV infection and how mucin production affects viral replication have not yet been elucidated. In this study, we show that levels of two miRNAs that target the UDP-GalNAc transferase GALNT3 are markedly decreased during the early stage of IAV infection, resulting in the upregulation of GALNT3 mRNA. We also demonstrate that the expression of GALNT3 initiates mucin production and affects IAV replication in infected cells. This is the first report demonstrating the mechanism underlying the miRNA-mediated initiation of mucin-type O-glycosylation in IAV-infected cells and its role in viral replication. Our results have broad implications for understanding IAV replication and suggest a strategy for the development of novel anti-influenza approaches.


Author(s):  
Jennifer S. Chen ◽  
Mia Madel Alfajaro ◽  
Ryan D. Chow ◽  
Jin Wei ◽  
Renata B. Filler ◽  
...  

Abstract Identifying drugs that regulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its symptoms has been a pressing area of investigation during the coronavirus disease 2019 (COVID-19) pandemic. Nonsteroidal anti-inflammatory drugs (NSAIDs), which are frequently used for the relief of pain and inflammation, could modulate both SARS-CoV-2 infection and the host response to the virus. NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which mediate the production of prostaglandins (PGs). As PGs play diverse biological roles in homeostasis and inflammatory responses, inhibiting PG production with NSAIDs could affect COVID-19 pathogenesis in multiple ways, including: (1) altering susceptibility to infection by modifying expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for SARS-CoV-2; (2) regulating replication of SARS-CoV-2 in host cells; and (3) modulating the immune response to SARS-CoV-2. Here, we investigate these potential roles. We demonstrate that SARS-CoV-2 infection upregulates COX-2 in diverse human cell culture and mouse systems. However, suppression of COX-2 by two commonly used NSAIDs, ibuprofen and meloxicam, had no effect on ACE2 expression, viral entry, or viral replication. In contrast, in a mouse model of SARS-CoV-2 infection, NSAID treatment reduced production of pro-inflammatory cytokines and impaired the humoral immune response to SARS-CoV-2 as demonstrated by reduced neutralizing antibody titers. Our findings indicate that NSAID treatment may influence COVID-19 outcomes by dampening the inflammatory response and production of protective antibodies rather than modifying susceptibility to infection or viral replication. Importance Public health officials have raised concerns about the use of nonsteroidal anti-inflammatory drugs (NSAIDs) for treating symptoms of coronavirus disease 2019 (COVID-19). NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which are critical for the generation of prostaglandins – lipid molecules with diverse roles in homeostasis and inflammation. Inhibition of prostaglandin production by NSAIDs could therefore have multiple effects on COVID-19 pathogenesis. Here, we demonstrate that NSAID treatment reduced both the antibody and pro-inflammatory cytokine response to SARS-CoV-2 infection. The ability of NSAIDs to modulate the immune response to SARS-CoV-2 infection has important implications for COVID-19 pathogenesis in patients. Whether this occurs in humans and whether it is beneficial or detrimental to the host remains an important area of future investigation. This also raises the possibility that NSAIDs may alter the immune response to SARS-CoV-2 vaccination.


2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.


2021 ◽  
Vol 11 (13) ◽  
pp. 6055
Author(s):  
Akhtar Ali ◽  
En-Hyung Kim ◽  
Jong-Hyun Lee ◽  
Kang-Hyun Leem ◽  
Shin Seong ◽  
...  

Prolonged inflammation results in chronic diseases that can be associated with a range of factors. Medicinal plants and herbs provide synergistic benefits based on the interaction of multiple phytochemicals. The dried root of Scutellaria baicalensis Georgi and its compounds possess anti-inflammatory, anti-oxidative, and anticancer effects. Processing is a traditional method to achieve clinical benefits by improving therapeutic efficacy and lowering toxicity. In this study, we investigated the anti-inflammatory and anti-oxidant effect of processed Scutellaria baicalensis Georgi extract (PSGE) against lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Data using Griess assay and ELISA showed that PSGE decreased nitric oxide and prostaglandin E2 (PGE2) levels against LPS. PSGE treatment up-regulated 15-hydroxyprostaglandin dehydrogenase (PGDH), while cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 expression did not change. Interestingly, PGE2 inhibition was regulated by prostaglandin catabolic enzyme 15-PGDH rather than COX-2/mPGES-1, enzymes essential for PGE2 synthesis. Additionally, PSGE-suppressed LPS-induced IL-6 and TNF-α production through NF-κB signaling. NF-κB release from an inactive complex was inhibited by HO-1 which blocked IκBα phosphorylation. The ROS levels lowered by PSGE were measured with the H2DCFDA probe. PSGE activated NRF2 signaling and increased antioxidant Hmox1, Nqo1, and Txn1 gene expression, while reducing KEAP1 expression. In addition, pharmacological inhibition of HO-1 confirmed that the antioxidant enzyme induction by PSGE was responsible for ROS reduction. In conclusion, PSGE demonstrated anti-inflammatory and anti-oxidant effects due to NRF2/HO-1-mediated NF-κB and ROS inhibition.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1103.2-1103
Author(s):  
C. Edenius ◽  
G. Ekström ◽  
J. Kolmert ◽  
R. Morgenstern ◽  
P. Stenberg ◽  
...  

Background:Microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the formation prostaglandin (PG) E2from cyclooxygenase derived PGH2(1, 2). Inhibition of mPGES-1 leads to reduction of pro-inflammatory PGE2, while in vessels there is a concomitant increase of vasoprotective prostacyclin (PGI2) via shunting of PGH2(3,4). Apart from relieving symptoms in experimental animal models of inflammation, inhibitors of mPGES-1 cause relaxation of human medium sized arteries(4)and resistance arteries(5). The prostaglandin profile following mPGES-1 inhibition, explains the anti-inflammatory effects and also opens for the possibility of treating inflammatory diseases with concomitant vasculopathies. GS-248 is a potent and selective inhibitor of mPGES-1 exhibiting sub-nanomolar IC50in human whole bloodex vivo.Objectives:To evaluate safety, tolerability, pharmacokinetics and pharmacodynamics of GS-248.Methods:Healthy males and females (age 18–73 years) were included in the study. Six cohorts were administrated single oral doses of 1-300mg GS-248 (n=36) or placebo (n=12), three cohorts were administered once daily doses of 20-180mg GS-248 (n=18) or placebo (n=12) over ten days. In addition, 8 subjects were treated in a separate cohort with 200mg celecoxib bid for ten days. Blood samples were drawn for measurement of GS-248 exposure and production of PGE2after LPS incubationex vivo. The content of PGE2and PGI2metabolites was measured in urine. All analyses were performed by LC-MS/MS.Results:GS-248 was safe and well tolerated at all tested dose levels. Maximum plasma concentration was achieved 1 - 2.5 hours after dosing, and half-life was about 10 hours. Induced PGE2formationex vivo,catalyzed by mPGES-1, was completely inhibited for 24 hours after a single low dose (40mg) of GS-248. In urine, GS-248 dose-dependently reduced the excretion of PGE2metabolite by more than 50% whereas the excretion of PGI2metabolite increased more than twice the baseline levels. In the celecoxib cohort urinary metabolites of both PGE2and PGI2were reduced with approx 50%.Conclusion:GS-248 at investigated oral doses was safe and well tolerated. There was a sustained inhibition of LPS induced PGE2formation in whole blood. In urine, there was a metabolite shift showing reduced PGE2and increased PGI2, while celecoxib reduced both PGE2and PGI2metabolites. This suggests that selective inhibition of mPGES-1 results in systemic shunting of PGH2to PGI2formation, leading to anti-inflammatory and vasodilatory effects, while preventing platelet activation. The results warrant further evaluation of GS-248 in inflammatory conditions with vasculopathies such as Digital Ulcers and Raynaud’s Phenomenon in Systemic Sclerosis.References:[1]Korotkova M, Jakobsson PJ. Persisting eicosanoid pathways in rheumatic diseases. Nat Rev Rheumatol. 2014;10:229-41[2]Bergqvist F, Morgenstern R, Jakobsson PJ. A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat. 2019;147:106383[3]Kirkby NS, et al. Mechanistic definition of the cardiovascular mPGES-1/COX-2/ADMA axis. Cardiovasc Res. 2020[4]Ozen G, et al. Inhibition of microsomal PGE synthase-1 reduces human vascular tone by increasing PGI2: a safer alternative to COX-2 inhibition. Br J Pharmacol. 2017;174:4087-98[5]Larsson K, et al. Biological characterization of new inhibitors of microsomal PGE synthase-1 in preclinical models of inflammation and vascular tone. Br J Pharmacol. 2019;176:4625-38Disclosure of Interests:Charlotte Edenius Shareholder of: Gesynta Pharma, Consultant of: Gesynta Pharma,, Gunilla Ekström Shareholder of: Gesynta Pharma, Consultant of: Gesynta Pharma,, Johan Kolmert Consultant of: Gesynta Pharma,, Ralf Morgenstern Shareholder of: Gesynta Pharma, Employee of: Gesynta Pharma, Patric Stenberg Shareholder of: Gesynta Pharma, Employee of: Gesynta Pharma, Per-Johan Jakobsson Shareholder of: Gesynta Pharma, Grant/research support from: Gesynta Pharma, AstraZeneca,, Göran Tornling Shareholder of: Gesynta Pharma, Vicore Pharma,, Consultant of: Gesynta Pharma, Vicore Pharma, AnaMar


Sign in / Sign up

Export Citation Format

Share Document