scholarly journals Dithiophosphate-Induced Redox Conversions of Reduced and Oxidized Glutathione

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2973
Author(s):  
Rezeda A. Ishkaeva ◽  
Ilyas S. Nizamov ◽  
Dmitriy S. Blokhin ◽  
Elizaveta A. Urakova ◽  
Vladimir V. Klochkov ◽  
...  

Phosphorus species are potent modulators of physicochemical and bioactive properties of peptide compounds. O,O-diorganyl dithiophoshoric acids (DTP) form bioactive salts with nitrogen-containing biomolecules; however, their potential as a peptide modifier is poorly known. We synthesized amphiphilic ammonium salts of O,O-dimenthyl DTP with glutathione, a vital tripeptide with antioxidant, protective and regulatory functions. DTP moiety imparted radical scavenging activity to oxidized glutathione (GSSG), modulated the activity of reduced glutathione (GSH) and profoundly improved adsorption and electrooxidation of both glutathione salts on graphene oxide modified electrode. According to NMR spectroscopy and GC–MS, the dithiophosphates persisted against immediate dissociation in an aqueous solution accompanied by hydrolysis of DTP moiety into phosphoric acid, menthol and hydrogen sulfide as well as in situ thiol-disulfide conversions in peptide moieties due to the oxidation of GSH and reduction of GSSG. The thiol content available in dissolved GSH dithiophosphate was more stable during air oxidation compared with free GSH. GSH and the dithiophosphates, unlike DTP, caused a thiol-dependent reduction of MTS tetrazolium salt. The results for the first time suggest O,O-dimenthyl DTP as a redox modifier for glutathione, which releases hydrogen sulfide and induces biorelevant redox conversions of thiol/disulfide groups.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hiromi Murase ◽  
Masamitsu Shimazawa ◽  
Mamoru Kakino ◽  
Kenji Ichihara ◽  
Kazuhiro Tsuruma ◽  
...  

Background. We investigated the effects of Brazilian green propolis and its constituents against white light- or UVA-induced cell damage in mouse retinal cone-cell line 661W or human skin-derived fibroblast cells (NB1-RGB).Methods. Cell damage was induced by 3,000lx white light for 24 h or 4/10 J/cm2UVA exposure. Cell viability was assessed by Hoechst33342 and propidium iodide staining or by tetrazolium salt (WST-8) cell viability assay. The radical scavenging activity of propolis induced by UVA irradiation in NB1-RGB cells was measured using a reactive-oxygen-species- (ROS-) sensitive probe CM-H2DCFDA. Moreover, the effects of propolis on the UVA-induced activation of p38 and extracellular signal-regulated kinase (ERK) were examined by immunoblotting.Results. Treatment with propolis and two dicaffeoylquinic acids significantly inhibited the decrease in cell viability induced by white light in 661W. Propolis and its constituents inhibited the decrease in cell viability induced by UVA in NB1-RGB. Moreover, propolis suppressed the intracellular ROS production by UVA irradiation. Propolis also inhibited the levels of phosphorylated-p38 and ERK by UVA irradiation.Conclusion. Brazilian green propolis may become a major therapeutic candidate for the treatment of AMD and skin damage induced by UV irradiation.


Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
S Ngom ◽  
L Breant ◽  
C Antheaume ◽  
C Minker ◽  
A Leick ◽  
...  

2018 ◽  
Vol 44 (4) ◽  
pp. 515-520
Author(s):  
M Kazemi

Carum copticum L. comprises several relevant species for food, cosmetic, perfumery and pharmaceutical industries. GC/MS analysis of the enential oil of C. copticum revealed γ- terpinene as a major component of C. copticum, with its contribution of 33.85%. Essential oils (EOs) exhibited a significant antimicrobial activity against all tested microbial strains. In addition, the C. copticum oil demonstrated the highest DPPH radical scavenging activity. These results clearly show the antimicrobial and antioxidant effects of the plant essential oil.


Sign in / Sign up

Export Citation Format

Share Document