scholarly journals Proteomic Analysis of Zeb1 Interactome in Breast Carcinoma Cells

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3143
Author(s):  
Sergey E. Parfenyev ◽  
Sergey V. Shabelnikov ◽  
Danila Y. Pozdnyakov ◽  
Olga O. Gnedina ◽  
Leonid S. Adonin ◽  
...  

Breast cancer is the most frequently diagnosed malignant neoplasm and the second leading cause of cancer death among women. Epithelial-to-mesenchymal Transition (EMT) plays a critical role in the organism development, providing cell migration and tissue formation. However, its erroneous activation in malignancies can serve as the basis for the dissemination of cancer cells and metastasis. The Zeb1 transcription factor, which regulates the EMT activation, has been shown to play an essential role in malignant transformation. This factor is involved in many signaling pathways that influence a wide range of cellular functions via interacting with many proteins that affect its transcriptional functions. Importantly, the interactome of Zeb1 depends on the cellular context. Here, using the inducible expression of Zeb1 in epithelial breast cancer cells, we identified a substantial list of novel potential Zeb1 interaction partners, including proteins involved in the formation of malignant neoplasms, such as ATP-dependent RNA helicase DDX17and a component of the NURD repressor complex, CTBP2. We confirmed the presence of the selected interactors by immunoblotting with specific antibodies. Further, we demonstrated that co-expression of Zeb1 and CTBP2 in breast cancer patients correlated with the poor survival prognosis, thus signifying the functionality of the Zeb1–CTBP2 interaction.

Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1610 ◽  
Author(s):  
Esmeralda Ramirez-Peña ◽  
James Arnold ◽  
Vinita Shivakumar ◽  
Robiya Joseph ◽  
Geraldine Vidhya Vijay ◽  
...  

Identifying bioenergetics that facilitate the epithelial to mesenchymal transition (EMT) in breast cancer cells may uncover targets to treat incurable metastatic disease. Metastasis is the number one cause of cancer-related deaths; therefore, it is urgent to identify new treatment strategies to prevent the initiation of metastasis. To characterize the bioenergetics of EMT, we compared metabolic activities and gene expression in cells induced to differentiate into the mesenchymal state with their epithelial counterparts. We found that levels of GLS2, which encodes a glutaminase, are inversely associated with EMT. GLS2 down-regulation was correlated with reduced mitochondrial activity and glutamine independence even in low-glucose conditions. Restoration of GLS2 expression in GLS2-negative breast cancer cells rescued mitochondrial activity, enhanced glutamine utilization, and inhibited stem-cell properties. Additionally, inhibition of expression of the transcription factor FOXC2, a critical regulator of EMT in GLS2-negative cells, restored GLS2 expression and glutamine utilization. Furthermore, in breast cancer patients, high GLS2 expression is associated with improved survival. These findings suggest that epithelial cancer cells rely on glutamine and that cells induced to undergo EMT become glutamine independent. Moreover, the inhibition of EMT leads to a GLS2-directed metabolic shift in mesenchymal cancer cells, which may make these cells susceptible to chemotherapies.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 259
Author(s):  
Monish Ram Makena ◽  
Myungjun Ko ◽  
Donna Kimberly Dang ◽  
Rajini Rao

The secretory pathway Ca2+-ATPase SPCA2 is a tumor suppressor in triple receptor negative breast cancer (TNBC), a highly aggressive molecular subtype that lacks tailored treatment options. Low expression of SPCA2 in TNBC confers poor survival prognosis in patients. Previous work has established that re-introducing SPCA2 to TNBC cells restores basal Ca2+ signaling, represses mesenchymal gene expression, mitigates tumor migration in vitro and metastasis in vivo. In this study, we examined the effect of histone deacetylase inhibitors (HDACi) in TNBC cell lines. We show that the pan-HDACi vorinostat and the class I HDACi romidepsin induce dose-dependent upregulation of SPCA2 transcript with concurrent downregulation of mesenchymal markers and tumor cell migration characteristic of epithelial phenotype. Silencing SPCA2 abolished the ability of HDACi to reverse epithelial to mesenchymal transition (EMT). Independent of ATPase activity, SPCA2 elevated resting Ca2+ levels to activate downstream components of non-canonical Wnt/Ca2+ signaling. HDACi treatment led to SPCA2-dependent phosphorylation of CAMKII and β-catenin, turning Wnt signaling off. We conclude that SPCA2 mediates the efficacy of HDACi in reversing EMT in TNBC by a novel mode of non-canonical Wnt/Ca2+ signaling. Our findings provide incentive for screening epigenetic modulators that exploit Ca2+ signaling pathways to reverse EMT in breast tumors.


2011 ◽  
Vol 102 (6) ◽  
pp. 1151-1157 ◽  
Author(s):  
Xiaoyan Li ◽  
Xiaoli Kong ◽  
Qiang Huo ◽  
Haiyang Guo ◽  
Shi Yan ◽  
...  

Neoplasma ◽  
2016 ◽  
Vol 63 (06) ◽  
pp. 901-910 ◽  
Author(s):  
B. SMOLKOVA ◽  
S. MIKLIKOVA ◽  
V. HORVATHOVA KAJABOVA ◽  
A. BABELOVA ◽  
N. EL YAMANI ◽  
...  

2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Yifan Wang ◽  
Ruocen Liao ◽  
Xingyu Chen ◽  
Xuhua Ying ◽  
Guanping Chen ◽  
...  

Abstract Breast cancer is considered to be the most prevalent cancer in women worldwide, and metastasis is the primary cause of death. Protease-activated receptor 1 (PAR1) is a GPCR family member involved in the invasive and metastatic processes of cancer cells. However, the functions and underlying mechanisms of PAR1 in breast cancer remain unclear. In this study, we found that PAR1 is highly expressed in high invasive breast cancer cells, and predicts poor prognosis in ER-negative and high-grade breast cancer patients. Mechanistically, Twist transcriptionally induces PAR1 expression, leading to inhibition of Hippo pathway and activation of YAP/TAZ; Inhibition of PAR1 suppresses YAP/TAZ-induced epithelial-mesenchymal transition (EMT), invasion, migration, cancer stem cell (CSC)-like properties, tumor growth and metastasis of breast cancer cells in vitro and in vivo. These findings suggest that PAR1 acts as a direct transcriptionally target of Twist, can promote EMT, tumorigenicity and metastasis by controlling the Hippo pathway; this may lead to a potential therapeutic target for treating invasive breast cancer.


2020 ◽  
Author(s):  
Kenneth F. Fuh ◽  
Robert D. Shepherd ◽  
Jessica S. Withell ◽  
Brayden K. Kooistra ◽  
Kristina D Rinker

Abstract Background: Fluid forces are an integral part of the tumor microenvironment through all phases of development and progression. However, it is not well understood how these forces affect key steps in the progression of breast cancer of Epithelial-to-Mesenchymal Transition (EMT) and adhesion to vascular wall endothelial cells. EMT is associated with the progression of most carcinomas through induction of new transcriptional programs within affected epithelial cells, resulting in cells becoming more motile and adhesive to endothelial cells.Methods: MDA-MB-231, SK-BR-3, BT-474, and MCF-7 cells and normal Human Mammary Epithelial Cells (HMECs) were exposed to fluid flow in a parallel-plate bioreactor system. Changes in gene expression were quantified using microarrays and qPCR, gene-gene interactions were elucidated using network analysis, and key modified genes were examined in clinical datasets. Changes in protein expression of key EMT markers between chemically induced EMT and flow-exposed cells were compared in immunocytochemistry assays. Finally, the ability of flow-stimulated and unstimulated cancer cells to adhere to an endothelial monolayer was evaluated in flow and static adhesion experiments.Results: Fluid flow stimulation resulted in upregulation of EMT inducers and downregulation of repressors. Specifically, Vimentin and Snail were upregulated both at the gene and protein expression levels in flow stimulated HMECs, suggesting progression towards an EMT phenotype. Flow-induced overexpression of a panel of cell adhesion genes was also observed. Network analysis revealed genes involved in cell flow responses including FN1, PLAU, and ALCAM. When evaluated in clinical datasets, overexpression of FN1, PLAU, and ALCAM was observed in patients with most subtypes of breast cancer. We also observed increased adhesion of flow-stimulated breast cancer cells compared to unstimulated controls, suggesting an increased potential to form secondary tumors at metastatic sites. Conclusions: This study shows that prolonged fluid force exposure on the order of 1 Pa promotes EMT and adhesion of breast cancer cells to an endothelial monolayer. Further, identified biomarkers were distinctly expressed in patient populations. A better understanding of how biophysical forces such as shear stress affect cellular processes involved in metastatic progression of breast cancer is important for identifying new molecular markers for disease progression, and for predicting metastatic risk.


Sign in / Sign up

Export Citation Format

Share Document