scholarly journals Deep Learning Insights into Lanthanides Complexation Chemistry

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3237
Author(s):  
Artem A. Mitrofanov ◽  
Petr I. Matveev ◽  
Kristina V. Yakubova ◽  
Alexandru Korotcov ◽  
Boris Sattarov ◽  
...  

Modern structure–property models are widely used in chemistry; however, in many cases, they are still a kind of a “black box” where there is no clear path from molecule structure to target property. Here we present an example of deep learning usage not only to build a model but also to determine key structural fragments of ligands influencing metal complexation. We have a series of chemically similar lanthanide ions, and we have collected data on complexes’ stability, built models, predicting stability constants and decoded the models to obtain key fragments responsible for complexation efficiency. The results are in good correlation with the experimental ones, as well as modern theories of complexation. It was shown that the main influence on the constants had a mutual location of the binding centers.

2021 ◽  
Vol 15 (8) ◽  
pp. 898-911
Author(s):  
Yongqing Zhang ◽  
Jianrong Yan ◽  
Siyu Chen ◽  
Meiqin Gong ◽  
Dongrui Gao ◽  
...  

Rapid advances in biological research over recent years have significantly enriched biological and medical data resources. Deep learning-based techniques have been successfully utilized to process data in this field, and they have exhibited state-of-the-art performances even on high-dimensional, nonstructural, and black-box biological data. The aim of the current study is to provide an overview of the deep learning-based techniques used in biology and medicine and their state-of-the-art applications. In particular, we introduce the fundamentals of deep learning and then review the success of applying such methods to bioinformatics, biomedical imaging, biomedicine, and drug discovery. We also discuss the challenges and limitations of this field, and outline possible directions for further research.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Taher Hajilounezhad ◽  
Rina Bao ◽  
Kannappan Palaniappan ◽  
Filiz Bunyak ◽  
Prasad Calyam ◽  
...  

AbstractUnderstanding and controlling the self-assembly of vertically oriented carbon nanotube (CNT) forests is essential for realizing their potential in myriad applications. The governing process–structure–property mechanisms are poorly understood, and the processing parameter space is far too vast to exhaustively explore experimentally. We overcome these limitations by using a physics-based simulation as a high-throughput virtual laboratory and image-based machine learning to relate CNT forest synthesis attributes to their mechanical performance. Using CNTNet, our image-based deep learning classifier module trained with synthetic imagery, combinations of CNT diameter, density, and population growth rate classes were labeled with an accuracy of >91%. The CNTNet regression module predicted CNT forest stiffness and buckling load properties with a lower root-mean-square error than that of a regression predictor based on CNT physical parameters. These results demonstrate that image-based machine learning trained using only simulated imagery can distinguish subtle CNT forest morphological features to predict physical material properties with high accuracy. CNTNet paves the way to incorporate scanning electron microscope imagery for high-throughput material discovery.


2021 ◽  
Vol 36 (06) ◽  
Author(s):  
NGUYEN MINH QUANG ◽  
TRAN NGUYEN MINH AN ◽  
NGUYEN HOANG MINH ◽  
TRAN XUAN MAU ◽  
PHAM VAN TAT

In this study, the stability constants of metal-thiosemicarbazone complexes, logb11 were determined by using the quantitative structure property relationship (QSPR) models. The molecular descriptors, physicochemical and quantum descriptors of complexes were generated from molecular geometric structure and semi-empirical quantum calculation PM7 and PM7/sparkle. The QSPR models were built by using the ordinary least square regression (QSPROLS), partial least square regression (QSPRPLS), primary component regression (QSPRPCR) and artificial neural network (QSPRANN). The best linear model QSPROLS (with k of 9) involves descriptors C5, xp9, electric energy, cosmo volume, N4, SsssN, cosmo area, xp10 and core-core repulsion. The QSPRPLS, QSPR PCR and QSPRANN models were developed basing on 9 varibles of the QSPROLS model. The quality of the QSPR models were validated by the statistical values; The QSPROLS: R2train = 0.944, Q2LOO = 0.903 and MSE = 1.035; The QSPRPLS: R2train = 0.929, R2CV = 0.938 and MSE = 1.115; The QSPRPCR: R2train = 0.934, R2CV = 0.9485 and MSE = 1.147. The neural network model QSPRANN with architecture I(9)-HL(12)-O(1) was presented also with the statistical values: R2train = 0.9723, and R2CV = 0.9731. The QSPR models also were evaluated externally and got good performance results with those from the experimental literature.


2019 ◽  
pp. 129-141 ◽  
Author(s):  
Hui Xian Chia

This article examines the use of artificial intelligence (AI) and deep learning, specifically, to create financial robo-advisers. These machines have the potential to be perfectly honest fiduciaries, acting in their client’s best interests without conflicting self-interest or greed, unlike their human counterparts. However, the application of AI technology to create financial robo-advisers is not without risk. This article will focus on the unique risks posed by deep learning technology. One of the main fears regarding deep learning is that it is a “black box”, its decision-making process is opaque and not open to scrutiny even by the people who developed it. This poses a significant challenge to financial regulators, whom would not be able to examine the underlying rationale and rules of the robo-adviser to determine its safety for public use. The rise of deep learning has been met with calls for ‘explainability’ of how deep learning agents make their decisions. This paper argues that greater explainability can be achieved by describing the ‘personality’ of deep learning robo-advisers, and further proposes a framework for describing the parameters of the deep learning model using concepts that can be readily understood by people without technical expertise. This regards whether the robo-adviser is ‘greedy’, ‘selfish’ or ‘prudent’. Greater understanding will enable regulators and consumers to better judge the safety and suitability of deep learning financial robo-advisers.


Sign in / Sign up

Export Citation Format

Share Document