scholarly journals Does the Temperature of the prise de mousse Affect the Effervescence and the Foam of Sparkling Wines?

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4434
Author(s):  
Clara Cilindre ◽  
Céline Henrion ◽  
Laure Coquard ◽  
Barbara Poty ◽  
Jacques-Emmanuel Barbier ◽  
...  

The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass. However, the underlying factor behind the fizziness of these wines involves a second in-bottle alcoholic fermentation, also well known as the prise de mousse. The aim of this study was to assess whether a low temperature (13 °C) or a high temperature (20 °C) during the in-bottle fermentation might have an impact on the effervescence and the foaming properties (i.e., collar height and bubble size) of three French sparkling wines (a Crémant de Loire and two Champagne wines), under standard tasting conditions. Our results showed that sparkling wines elaborated at 13 °C and served in standard tasting conditions (i.e., 100 mL, 18 °C) had better ability to keep the dissolved CO2 (between 0.09 and 0.30 g/L) in the liquid phase than those elaborated at 20 °C (with P < 0.05). Most interestingly, we also observed, for the Crémant de Loire and for one Champagne wine, that the lower the temperature of the prise de mousse, the smaller (with P < 0.05) the bubbles in the foam collar throughout the wine tasting.

1986 ◽  
Vol 90 ◽  
Author(s):  
D. G. Knight ◽  
C. J. Miner ◽  
A. Majeed

ABSTRACTHigh purity In.53 Ga.47 As and InP with carrier concentrations [ND–NA] < 5×1015 cm−3 has been grown by the LPE technique on both n-type and semi-insulating substrates to detect and identify trace donor and acceptor impurities. Acceptor impurities have been detected in low temperature photoluminescence spectra where LPE melt baking and growth programs indicate a melt origin for two of these species, one of which is zinc. Data from semiconductor profiles provides evidence for sulfur and tin donor impurities, which comes from the rinse melt used to etch back substrates doped with the respective contaminants. Silicon and sulfur contaminants have been detected by SIMS measurements; and may arise not only from the indium and III-V materials, but also the graphite boat used to grow the epilayers. Volatile sulfur-containing compounds have been detected during high temperature bake-out of high purity graphite boats.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000951-000956 ◽  
Author(s):  
Hannes Greve ◽  
F. Patrick McCluskey

Low Temperature Transient Liquid Phase Sintering (LT-TLPS) enables the formation of joints robust to high temperatures at low process temperatures. TLPS systems consist of one or more low temperature constituents (i.e. Sn) and one or more high temperature constituents (i.e. Cu). The sinter joints are formed by intermetallic compound formation between these constituents. In this paper a paste based LT-TLPS approach is demonstrated. The organic binders and fluxes used to mix the pastes prevent the metal particles from oxidation and facilitate a vacuum-free process in air without the need of a reducing atmosphere. Pastes based on the Cu-Sn system have been developed enabling a completely pressure-less process. Furthermore sinter pastes for LT-TLPS at low pressure (&lt;0.5MPa) applied during the initial stage of the sintering process have been developed which form almost void free joints. To assess the strength of the sintered joints a high-temperature shear fixture has been designed. Shear tests have been performed at 25°C, 400°C, and 600°C to characterize the influence of high temperature conditions on the joint performance. The shear strength of the joints formed without pressure has been assessed for different Cu-to-Sn ratios at all temperature levels. It is shown that the maximum application temperature and shear strength depends on the ratio of low melting temperature and high melting temperature constituents. The pastes introduced here can be used to form joints resilient to application temperatures of up to 600°C. They show the potential to form joints for reliable operation under extreme temperature conditions.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


Author(s):  
Gennadiy Valentinovich Alexeev ◽  
Elena Igorevna Verboloz

The article focuses on the process of intensive mixing of liquid phase in the tin during high-temperature sterilization, i.e. sterilization when temperature of the heat carrier reaches 150-160°C. It has been stated that for intensification of the thermal process during sterilization of tinned fish with liquid filling it is preferable to turn a tin from bottom to top. This operation helps to increase the driving power of the process and to shorten warming time. Besides, high-temperature sterilization carried out according to experimental modes, where the number of tin turnovers is calculated, greatly shortens processing time and improves quality of the product. In this case there is no superheating, all tins are evenly heated. The study results will contribute to equipment modernization and to preserving valuable food qualities.


2020 ◽  
Vol 10 (10) ◽  
pp. 59-67
Author(s):  
Victor N. ANTIPOV ◽  
◽  
Andrey D. GROZOV ◽  
Anna V. IVANOVA ◽  
◽  
...  

The overall dimensions and mass of wind power units with capacities larger than 10 MW can be improved and their cost can be decreased by developing and constructing superconducting synchronous generators. The article analyzes foreign conceptual designs of superconducting synchronous generators based on different principles: with the use of high- and low-temperature superconductivity, fully superconducting or only with a superconducting excitation system, and with the use of different materials (MgB2, Bi2223, YBCO). A high cost of superconducting materials is the main factor impeding commercial application of superconducting generators. In view of the state of the art in the technology for manufacturing superconductors and their cost, a conclusion is drawn, according to which a synchronous gearless superconducting wind generator with a capacity of 10 MW with the field winding made of a high-temperature superconducting material (MgB2, Bi-2223 or YBCO) with the «ferromagnetic stator — ferromagnetic rotor» topology, with the stator diameter equal to 7—9 m, and with the number of poles equal to 32—40 has prospects for its practical use in the nearest future.


Alloy Digest ◽  
1980 ◽  
Vol 29 (12) ◽  

Abstract SOMERS LTA Copper is a wrought copper foil that can be annealed at 350 F in 15 minutes to the full-soft condition; its use simplifies the manufacture of printed circuits (LTA = Low-Temperature Annealable). LTA Copper is especially useful for foil weights up to and including one ounce per square foot (0.0014-inch thick) for laminating to high-temperature dielectric substrates. This datasheet provides information on composition, physical properties, and elasticity as well as fatigue. It also includes information on forming, heat treating, and machining. Filing Code: Cu-407. Producer or source: Olin Corporation.


Alloy Digest ◽  
1958 ◽  
Vol 7 (2) ◽  

Abstract CHRO-MOW is a tough hot work steel which will harden from a relatively low temperature in air. It possesses a desirable combination of toughness and red-hardness. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance as well as forming, heat treating, and machining. Filing Code: TS-67. Producer or source: Crucible Steel Company of America.


Sign in / Sign up

Export Citation Format

Share Document