scholarly journals A Reusable Efficient Green Catalyst of 2D Cu-MOF for the Click and Knoevenagel Reaction

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5296
Author(s):  
Kaushik Naskar ◽  
Suvendu Maity ◽  
Himadri Sekhar Maity ◽  
Chittaranjan Sinha

[Cu(CPA)(BDC)]n (CPA = 4-(Chloro-phenyl)-pyridin-4-ylmethylene-amine; BDC = 1,4-benzenedicarboxylate) has been synthesized and structurally characterized by single crystal X-Ray diffraction measurement. The structural studies establish the copper (II) containing 2D sheet with (4,4) square grid structure. The square grid lengths are 10.775 and 10.769 Å. Thermal stability is assessed by TGA, and subsequent PXRD data establish the crystallinity. The surface morphology is evaluated by FE-SEM. The N2 adsorption−desorption analysis demonstrates the mesoporous feature (∼6.95 nm) of the Cu-MOF. This porous grid serves as heterogeneous green catalyst with superficial recyclability and thermal stability and facilitates organic transformations efficiently such as, Click and Knoevenagel reactions in the aqueous methanolic medium.

2005 ◽  
Vol 20 (10) ◽  
pp. 2682-2690 ◽  
Author(s):  
Yufang Zhu ◽  
Weihua Shen ◽  
Xiaoping Dong ◽  
Jianlin Shi

A stable mesoporous multilamellar silica vesicle (MSV) was developed with a gallery pore size of about 14.0 nm. A simulative enzyme, hemoglobin (Hb), was immobilized on this newly developed MSV and a conventional mesoporous silica material SBA-15. The structures and the immobilization of Hb on the mesoporous supports were characterized with x-ray diffraction, transmission electron microscopy, N2 adsorption-desorption isotherms, Fourier transform infrared, ultraviolet-visible spectroscopy, and so forth. MSV is a promising support for immobilizing Hb due to its large pore size and high Hb immobilization capacity (up to 522 mg/g) compared to SBA-15 (236 mg/g). Less than 5% Hb was leached from Hb/MSV at pH 6.0. The activity study indicated that the immobilized Hb retained most peroxidase activity compared to free Hb. Thermal stability of the immobilized Hb was improved by the proctetive environment of MSV and SBA-15. Such an Hb-mesoporous support with high Hb immobilization capacity, high activity, and enhanced thermal stability will be attractive for practical applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2170
Author(s):  
Chengcheng Yu ◽  
Xu Hu ◽  
Shichao Lu ◽  
Yangchuan Ke ◽  
Jianbin Luo

The objective of this study was to investigate the effect of three different treatments on the morphology, microstructure, and the thermal characteristics of a montmorillonite (Mt) sample, by using hydrochloric acid (HCl), tributyl tetradecyl phosphonium chloride (TTPC) surfactant, and γ-methacryloxypropyltrimethoxysilane (γ-MPS). The resultant nanofillers were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption–desorption analysis, X-ray fluorescence spectrometry (XRF), and thermogravimetric analysis (TGA). The results showed that the amount of chemical grafting of the γ-MPS was increased after the acid treatment, whereas the amount of intercalation of the TTPC surfactant was decreased. The preintercalation of TTPC or silylation of γ-MPS, for the Mt sample, had a certain hindrance effect on its subsequent silylation or intercalation treatments. Furthermore, the effect of four different nanofillers on the thermal stability properties of the polystyrene (PS) matrix were also investigated. The results showed an increase in thermal stability for the triple-functionalized Mt, compared with the double-functionalized samples. The onset decomposition temperatures and the maximum mass loss temperatures of the PS nanocomposites were increased by 27 °C and 32 °C, respectively, by the incorporation of triple-modified Mt, as a result of the good exfoliation and dispersion of the nanolayers, more favorable polymer–nanofiller interaction, as well as the formation of a more remarkable tortuous pathway in the continuous matrix.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3371 ◽  
Author(s):  
Svensson ◽  
Grins ◽  
Eklöf ◽  
Eriksson ◽  
Wardecki ◽  
...  

The CO2 adsorption on various Prussian blue analogue hexacyanoferrates was evaluated by thermogravimetric analysis. Compositions of prepared phases were verified by energy-dispersive X-ray spectroscopy, infra-red spectroscopy and powder X-ray diffraction. The influence of different alkali cations in the cubic Fm3m structures was investigated for nominal compositions A2/3Cu[Fe(CN)6]2/3 with A = vacant, Li, Na, K, Rb, Cs. The Rb and Cs compounds show the highest CO2 adsorption per unit cell, 3.3 molecules of CO2 at 20 C and 1 bar, while in terms of mmol/g the Na compound exhibits the highest adsorption capability, 3.8 mmol/g at 20 C and 1 bar. The fastest adsorption/desorption is exhibited by the A-cation free compound and the Li compound. The influence of the amount of Fe(CN)6 vacancies were assessed by determining the CO2 adsorption capabilities of Cu[Fe(CN)6]1/2 (Fm3m symmetry, nominally 50% vacancies), KCu[Fe(CN)6]3/4 (Fm3m symmetry, nominally 25% vacancies), and CsCu[Fe(CN)6] (I-4m2 symmetry, nominally 0% vacancies). Higher adsorption was, as expected, shown on compounds with higher vacancy concentrations.


Author(s):  
Władysław Janusz ◽  
Ewa Skwarek

AbstractThe aim of the study was the basic incidence on the phenomenon of adsorption that occurs at the hydroxyapatite/malic acid interface, leading to a change in the surface properties of hydroxyapatite, Analytical methods used in the research: X-ray diffraction (XRD) as well as by the, adsorption–desorption of nitrogen (ASAP), potentiometric titration. The specific adsorption of malic acid ions at the hydroxyapatite interface was investigated by means of the radioisotope method. The zeta potential of hydroxyapatite dispersions was determined by electrophoresis with Zetasizer Nano ZS90 by Malvern. The particle sizes of hydroxyapatite samples were analyzed using Masteriszer 2000 Malvern. Studies on the kinetics of malic acid on hydroxyapatite from a solution with an initial concentration of 1 mmol/dm3 have shown that the adsorption process is initially fast, followed by a slow adsorption step. An increase in the pH of the solution causes a decrease in the malic acid adsorption as a result of competition with hydroxyl ions. The presence of adsorbed malic acid was confirmed by the FTIR measurements. The effect of malic acid adsorption on the zeta potential and particle size distribution of hydroxyapatite in the NaCl solution was investigated.


2011 ◽  
Vol 44 (5) ◽  
pp. 983-990 ◽  
Author(s):  
Chris Elschner ◽  
Alexandr A. Levin ◽  
Lutz Wilde ◽  
Jörg Grenzer ◽  
Christian Schroer ◽  
...  

The electrical and optical properties of molecular thin films are widely used, for instance in organic electronics, and depend strongly on the molecular arrangement of the organic layers. It is shown here how atomic structural information can be obtained from molecular films without further knowledge of the single-crystal structure. C60 fullerene was chosen as a representative test material. A 250 nm C60 film was investigated by grazing-incidence X-ray diffraction and the data compared with a Bragg–Brentano X-ray diffraction measurement of the corresponding C60 powder. The diffraction patterns of both powder and film were used to calculate the pair distribution function (PDF), which allowed an investigation of the short-range order of the structures. With the help of the PDF, a structure model for the C60 molecular arrangement was determined for both C60 powder and thin film. The results agree very well with a classical whole-pattern fitting approach for the C60 diffraction patterns.


2006 ◽  
Vol 70 (6) ◽  
pp. 467-472 ◽  
Author(s):  
Tomonori Nambu ◽  
Nobue Shimizu ◽  
Hisakazu Ezaki ◽  
Hiroshi Yukawa ◽  
Masahiko Morinaga ◽  
...  

2018 ◽  
Vol 2017 (1) ◽  
pp. 219-228
Author(s):  
Fengling Liu ◽  
Ziyan Guo ◽  
Hui Qiu ◽  
Xia Lu ◽  
Hua Fang ◽  
...  

Abstract Four kinds of mesoporous carbons, C1-h-w, C2-h-h, C3-s-w, and C4-s-h, with different pore geometries were prepared and characterised, and their adsorption behaviours with aqueous direct yellow 12 (DY-12) were investigated. The results of X-ray diffraction and transmission electron microscopy show that C1-h-w and C3-s-w have wormlike pore characteristics, whereas C2-h-h and C4-s-h have 2-D hexagonally arranged pores. According to the N2 adsorption/desorption results, the specific surface area of C1-h-w (1,378 m2/g) is the largest among the four carbons. The adsorption isotherms could be effectively fitted using the Langmuir model. The maximum adsorption amounts of C1-h-w, C2-h-h, C3-s-w and C4-s-h are 0.968 mmol/g, 0.726 mmol/g, 0.161 mmol/g and 0.156 mmol/g, respectively. The pseudo-second-order rate constants of C1-h-w (39.8 g/(mmol·min)) and C2-h-h (7.28 g/(mmol·min)) are substantially larger than those of C3-s-w (0.0046 g/(mmol·min)) and C4-s-h (0.014 g/(mmol·min)), indicating that an open and interconnected pore geometry is favourable for DY-12 adsorption. Furthermore, DY-12 diffusion in 2-D hexagonally ordered cylindrical pores is superior to that in wormlike pores due to the smoothness of the channels in the former. External mass transfer and intraparticle diffusion both play roles in the adsorption process.


1998 ◽  
Vol 514 ◽  
Author(s):  
M. F. Wu ◽  
A. Vantomne ◽  
S. Hogg ◽  
H. Pattyn ◽  
G. Langouche ◽  
...  

ABSTRACTThe Nd-disilicide, which exists only in a tetragonal or an orthorhombic structure, cannot be grown epitaxially on a Si(111) substrate. However, by adding Y and using channeled ion beam synthesis, hexagonal Nd0.32Y0.68Si1.7 epilayers with lattice constant of aepi = 0.3915 nm and cepi = 0.4152 nm and with good crystalline quality (χmin of Nd and Y is 3.5% and 4.3 % respectively) are formed in a Si(111) substrate. This shows that the addition of Y to the Nd-Si system forces the latter into a hexagonal structure. The epilayer is stable up to 950 °C; annealing at 1000 °C results in partial transformation into other phases. The formation, the structure and the thermal stability of this ternary silicide have been studied using Rutherford backscattering/channeling, x-ray diffraction and transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document