scholarly journals A Comprehensive Review for Groundwater Contamination and Remediation: Occurrence, Migration and Adsorption Modelling

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5913
Author(s):  
Osamah Al-Hashimi ◽  
Khalid Hashim ◽  
Edward Loffill ◽  
Tina Marolt Čebašek ◽  
Ismini Nakouti ◽  
...  

The provision of safe water for people is a human right; historically, a major number of people depend on groundwater as a source of water for their needs, such as agricultural, industrial or human activities. Water resources have recently been affected by organic and/or inorganic contaminants as a result of population growth and increased anthropogenic activity, soil leaching and pollution. Water resource remediation has become a serious environmental concern, since it has a direct impact on many aspects of people’s lives. For decades, the pump-and-treat method has been considered the predominant treatment process for the remediation of contaminated groundwater with organic and inorganic contaminants. On the other side, this technique missed sustainability and the new concept of using renewable energy. Permeable reactive barriers (PRBs) have been implemented as an alternative to conventional pump-and-treat systems for remediating polluted groundwater because of their effectiveness and ease of implementation. In this paper, a review of the importance of groundwater, contamination and biological, physical as well as chemical remediation techniques have been discussed. In this review, the principles of the permeable reactive barrier’s use as a remediation technique have been introduced along with commonly used reactive materials and the recent applications of the permeable reactive barrier in the remediation of different contaminants, such as heavy metals, chlorinated solvents and pesticides. This paper also discusses the characteristics of reactive media and contaminants’ uptake mechanisms. Finally, remediation isotherms, the breakthrough curves and kinetic sorption models are also being presented. It has been found that groundwater could be contaminated by different pollutants and must be remediated to fit human, agricultural and industrial needs. The PRB technique is an efficient treatment process that is an inexpensive alternative for the pump-and-treat procedure and represents a promising technique to treat groundwater pollution.

2018 ◽  
Vol 777 ◽  
pp. 256-261 ◽  
Author(s):  
André Ribeiro ◽  
André Mota ◽  
Margarida Soares ◽  
Carlos Castro ◽  
Jorge Araújo ◽  
...  

Electrokinetic remediation deserves particular attention in soil treatment due to its peculiar advantages, including the capability of treating fine and low permeability materials, and achieving consolidation, dewatering and removal of salts and inorganic contaminants like heavy metals in a single stage. In this study, the remediation of artificially lead (II) contaminated soil by electrokinetic process, coupled with Eggshell Inorganic Fraction Powder (EGGIF) permeable reactive barrier (PRB), was investigated. An electric field of 2 V cm-1was applied and was used an EGGIF/soil ratio of 30 g kg-1 of contaminated soil for the preparation of the permeable reactive barrier (PRB) in each test. It was obtained high removal rates of lead in both experiments, especially near the cathode. In the normalized distance to cathode of 0.2 it was achieved a maximum removal rate of lead (II) of 68, 78 and 83% in initial lead (II) concentration of 500 mg-1, 200 mg-1 and 100 mg-1, respectively. EGGIF (Eggshell Inorganic Fraction) proved that can be used as permeable reactive barrier (PRB) since in all the performed tests were achieved adsorptions yields higher than 90%.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2512
Author(s):  
Dun-Sheng Yang ◽  
Shyi-Tien Chen

Conventional pump-and-treat strategies for dealing with groundwater contamination are both energy- and time-consuming. Potential passive biological techniques are of interest to remedy the massive volume of total petroleum hydrocarbon (TPH)-contaminated groundwater worldwide. In this study, novel biopellets made of TPH-acclimated microbes, fermented fruit peel materials, and CaO2 recycled from eggshells were manufactured to treat TPH-contaminated groundwater. The biopellets provided 56 mg of oxygen and achieved a C:N:P ratio by weight of 10:4:1. Moreover, each biopellet was capped with alginate to prolong its floating time in water to 25 days. The mimicked groundwater spiked with 500 mg/L diesel TPHs (TPHd) was treated using our novelly manufactured biopellets. After 8 days of treatment, results showed a 98.8% removal of spiked TPHd at a rate of 64.1 mg/L per day, with a microbial count that increased from nearly zero to 1.0 × 107 CFU/mL. The residual TPHd constituents were mainly C13–C18. Furthermore, microbial consumption of N, P, and oxygen was noted during the 8-day period of TPHd removal. As the TPHd level increased to 1500 mg/L, the removal rate reached 45 mg/L per day, and all TPHd had been removed after 22 days.


2000 ◽  
Vol 45 (1-2) ◽  
pp. 123-137 ◽  
Author(s):  
David W Blowes ◽  
Carol J Ptacek ◽  
Shawn G Benner ◽  
Che W.T McRae ◽  
Timothy A Bennett ◽  
...  

2010 ◽  
Vol 636-637 ◽  
pp. 1365-1370 ◽  
Author(s):  
M. Oliveira ◽  
Ana Vera Machado ◽  
Regina Nogueira

Permeable reactive barriers were developed for phosphorus removal. The barrier consists in an organic-inorganic hybrid material, which allows water and others species to flow through it, while selectively removes the contaminants. Polyethylene oxide (POE) and aluminium oxide (Al2O3) were used as the organic and the inorganic parts, respectively. The hybrid material was obtained by sol-gel reaction, using aluminium isopropoxide as inorganic percursor in order to attain Al2O3. The hybrid material produced was characterized by FT-IR spectroscopy and thermogravimetry. The previous tests for phosphorus removal have shown the effectiveness capacity of the developed material to remove it.


2007 ◽  
Vol 5 (1) ◽  
pp. 87-106 ◽  
Author(s):  
Marek Jiricek ◽  
Ondra Sracek ◽  
Vaclav Janda

AbstractThe performance of a ground level reactive cell, filled with Fe0, designed for the treatment of water contaminated by chlorinated solvents, having a total input concentration of approximately 2 mg 1−1 of the principal contaminants trichloroethene and perchloroethene, was tested at the Milovice site in the Czech Republic. A residence time of 1.62 days in the box was sufficient to reduce concentrations to a fraction less than 0.015 of the initial concentration. However, incomplete degradation of cis-1,2-DCE was observed. Reactions approximated first-order kinetics. The principal changes of concentrations of inorganic dissolved species in the reactive cell occurred for Ca2+, HCO 3−, NO 3− (decreased) and for Fe (initially increased, then decreased). Changes for Ca2+ and HCO 3− were caused by the precipitation of secondary carbonate mineral phases such as aragonite and siderite with the minor presence of green rust-CO3. Concentration changes were gradual, along the complete length of the cell with a maximum at the inlet zone. The observations were attributed to minor increases of pH and slow kinetics of precipitation in the carbonate-buffered system. The average porosity loss was estimated to be approximately 2.7 % of the initial porosity per year, suggesting the long-term function of the permeable reactive barrier.


1989 ◽  
Vol 23 (6) ◽  
pp. 630-636 ◽  
Author(s):  
Douglas M. Mackay ◽  
John A. Cherry

2020 ◽  
Vol 51 (2) ◽  
pp. 723-733
Author(s):  
Alquzweeni & Faisal

This study was aimed to investigate the possibility of using iron slag by product as reactive materials in the porous reactive barriers technologies to achieve the principles of sustainability. Results reveal that the maximum adsorption capacity of iron slag (=2.309 mg/g) can be calculated by Langmuir model because it is more representative for adsorption data. This means that the chem-sorption is predominant mechanism for sorption of lead ions where the dissolution of calcium oxide by hydrolysis and ion exchange can enhance the removal of lead ions by iron oxide surface sites. In addition, the results of continuous tests conducted for 140 hours certified that the longevities of the barriers is proportional straightforwardly with the bed depth but it changed inversely with initial concentration of metal ions and flowrate. Hydraulic conductivity was recognized to remain approximately constant and this certify that there is no precipitation occurred through the removal process. The COMSOL software was proved its ability in the description of the measured breakthrough curves with high agreement.  


2018 ◽  
Vol 20 (2) ◽  
pp. 269-280 ◽  

It is an indisputable fact that any environmental clean-up technology generating certain kind of effective result would be easily supported. One of them includes Permeable reactive bio-barrier which is an innovative technology started from 90’s to treat a variety of contaminants along the natural gradient flow of groundwater through immobilization or transformation of pollutants into less toxic and harmful form. Despite of any broad acknowledgement, there are lesser known knowledge about use of microorganisms in permeable reactive barriers, mingling of microorganisms with other reactive media and their effect on each other’s reactivity. The current review deals with an overview of the types of reactive media used in Permeable Reactive Barriers (PRBs) as well as different bio-barriers (PRBBs) utilized for the treatment of various contaminants, long–term performance of permeable reactive barrier and combination of microorganism and reactive media to look forward for their symbiotic relationship in permeable reactive barrier for environmental remediation.


2019 ◽  
Vol 19 (2) ◽  
pp. 486 ◽  
Author(s):  
Nguyen Thi Thuong ◽  
Nguyen Thi Tuyet Nhi ◽  
Vo Thi Cam Nhung ◽  
Hoang Ngoc Bich ◽  
Bui Thi Phuong Quynh ◽  
...  

A number of harmful effects on the ecosystem, the life of humankind, and living species caused by dye-contaminated wastewater have urged the development for an efficient and cost-efficient treatment method for colored effluents. The cellulose-based adsorbents have been considered as a facile and efficient approach to remove hazardous pollutants because of the abundance of inexpensive agricultural wastes in Viet Nam. This study aims to investigate the elimination of methylene blue (MB) and crystal violet (VL) from wastewater using a fixed-bed column of pre-treated durian peel. Examined variables in the process are bed depths (2–6 cm), flow rate (5–20 mL/min), and influent dye concentrations (200–600 mg/L). The highest adsorption amount of pre-treated DP was 235.80 mg/g and 527.64 mg/g, respectively, on a 600 mg/L of methylene blue and crystal violet achieved within a bed height of 4 cm and a flow rate of 10 mL/min. Accordingly, the breakthrough curves were constructed and modeled using the relevant theoretical models under the effects of different experimental conditions. Pre-treated durian peel was found to exhibit high adsorption capacity for cationic dye in an initial concentration of 200–600 mg/L with complete removal being obtained.


Sign in / Sign up

Export Citation Format

Share Document