scholarly journals Methoxy-Substituted γ-Oxa-ε-Lactones Derived from Flavanones—Comparison of Their Anti-Tumor Activity In Vitro

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6295
Author(s):  
Aleksandra Pawlak ◽  
Marta Henklewska ◽  
Beatriz Hernández-Suárez ◽  
Monika Siepka ◽  
Witold Gładkowski ◽  
...  

Background: The study investigated four flavanone-derived γ-oxa-ε-lactones: a parent unsubstituted compound and its three derivatives with the methoxy group in positions 2′, 4′ and 8. Our objective was to find out if the introduction of the methoxy group into the aromatic ring affects in vitro anti-tumor potency of the investigated lactones. Methods: Cytotoxic and pro-apoptotic effects were assessed with cytometric tests with propidium iodide, annexin V, and Western blot techniques. We also investigated potential synergistic potency of the tested lactones and glucocorticoids in canine lymphoma/leukemia cell lines. Results: The tested flavanone-derived lactones showed anti-cancer activity in vitro. Depending on its location, the methoxy group either increased or decreased cytotoxicity of the derivatives as compared with the parent compound. The most potent lactone was the one with the methoxy group at position 4′ of the B ring (compound 3), and the weakest activity was observed when the group was located at C-8 in the A ring. A combination of the lactones with glucocorticoids confirmed their synergy in anti-tumor activity in vitro. Conclusions: Methoxy-substituted flavanone-derived lactones effectively kill canine lymphoma/leukemia cells in vitro and, thanks to their synergistic action with glucocorticoids, may potentially be applied in the treatment of hematopoietic cancers.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3271-3271
Author(s):  
John M. Fidler ◽  
Jinhua An ◽  
John H. Musser ◽  
Duncan H. Mak ◽  
Bing Carter ◽  
...  

Abstract Abstract 3271 Acute Myeloid Leukemia (AML) is the most common form of adult acute leukemia and the second most common childhood leukemia. AML has the lowest survival rate among leukemias, and the frequency is increasing as the population ages. Current therapies are inadequate, and a need exists for better therapeutic agents to treat AML, both as initial treatment for newly diagnosed patients and for those who have failed current therapy and relapsed. Natural products, such as taxol, have shown activities in a variety of disease states, including cancer. Triptolide is a natural product diterpenoid derived from Tripterygium wilfordii Hook f, and has shown anti-cancer activity in a broad range of solid tumors in preclinical models. It induces apoptosis in various leukemic cell lines and primary AML blasts (Carter, B et al, Blood 2006). Derivatives of triptolide with improved pharmacokinetics and bioavailability offer the opportunity to optimize the activity of triptolide for clinical application in AML. MRx102 is a triptolide derivative that is more hydrophobic than triptolide. It has potent in vitro cytotoxic activity with human tumor and leukemia cell lines, an unusual result for triptolide derivatives because they are usually much less active in vitro than the parent compound. Designed as a prodrug, MRx102 exerts cytotoxic activity with human AML cell lines and other human leukemia cell lines without pre-incubation with plasma esterases (IC50 of 51.0 and 37.1 nM with MV4-11 AML cells at 48 and 72 hours, respectively, ∼55% and ∼36% of the activity of triptolide, respectively). MRx102 decreases the viable CD34+ blasts of AML patient samples (a mean of 79.8 ± 8.8% specific apoptosis at 100 nM, n=3), and overcomes the apoptosis protection by co-cultivated stromal cells (with a similar mean of 74.1 ± 8.5%). MRx102 shows dose-dependent anti-tumor activity with the MV4-11 cell line in nude mouse human AML tumor xenografts. After 42 days of MRx102 dosing at 1.35 mg/kg/day i.p., tumor volume was inhibited by 99.7%. Tumors removed from several mice appeared to be Matrigel pellets rather than vascularized tumors, suggesting that many of the tumors were completely eliminated. In studies with the OCI-AML3 human AML cell line xenograft model, the group receiving MRx102 at 1.35 mg/kg/day i.p. showed similar high activity, with mean tumor volume reduced by as much as 99.2% on day 23 compared to the vehicle control group. Tumors of 7 of 10 mice were smaller than the day 0 volumes at the day 28 end of the study. As part of drug development, toxicology testing with MRx102 was initiated with an acute single dose rat toxicology study with no deaths and no adverse signs up to the top dose of 3.0 mg/kg MRx102 in DMSO/PBS administered i.v. The maximum tolerated dose (MTD) is greater than 3 mg/kg of MRx102, and the no observable adverse effect level (NOAEL) is at least 3 mg/kg. A 7-day subacute rat toxicology study of MRx102 showed no deaths and no adverse signs up to the top dose of 1.5 mg/kg/day MRx102 in DMSO/PBS administered daily i.v. for 7 days. The histopatholgy report shows no findings related to administration of the test article. The MRx102 MTD is greater than 1.5 mg/kg/day, and the NOAEL is at least 1.5 mg/kg/day. Previously observed NOAELs for related compounds have been less than 0.1 mg/kg/day. The current studies show potent anti-tumor activity as well as an unusually positive safety profile for MRx102 when compared to triptolide and other triptolide derivatives. Further MRx102 drug development is underway, with the intention of submitting an Investigational New Drug application to the Food and Drug Administration leading to clinical evaluation of MRx102 in AML patients. Updated results on current drug development activities will be presented at the meeting. This work is supported in part by NCI SBIR Contract HHSN261200900061C to MyeloRx LLC. Disclosures: Fidler: MyeloRx LLC: Employment, Equity Ownership, PI for an NCI Contract to MyeloRx LLC, Patents & Royalties. An:MyeloRx LLC: Employment, Equity Ownership, participant in research under an NCI SBIR Contract to MyeloRx LLC. Musser:MyeloRx LLC: Employment, Equity Ownership, Patents & Royalties, participant in research under an NCI SBIR Contract to MyeloRx LLC. Mak:MyeloRx LLC: participant in research under an NCI SBIR Contract to MyeloRx LLC. Carter:MyeloRx LLC: participant in research under an NCI SBIR Contract to MyeloRx LLC. Andreeff:MyeloRx LLC: Consultancy, participant in research under an NCI SBIR Contract to MyeloRx LLC.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4362 ◽  
Author(s):  
Aleksandra Pawlak ◽  
Marta Henklewska ◽  
Beatriz Hernández Suárez ◽  
Mateusz Łużny ◽  
Ewa Kozłowska ◽  
...  

Chalcones are interesting candidates for anti-cancer drugs due to the ease of their synthesis and their extensive biological activity. The study presents antitumor activity of newly synthesized chalcone analogues with a methoxy group on a panel of canine lymphoma and leukemia cell lines. The antiproliferative effect of the 2′-hydroxychalcone and its methoxylated derivatives was evaluated in MTT assay after 48 h of treatment in different concentrations. The proapoptotic activity was studied by cytometric analysis of cells stained with Annexin V/FITC and propidium iodide and by measure caspases 3/7 and 8 activation. The DNA damage was evaluated by Western blot analysis of phosphorylated histone H2AX. The new compounds had selective antiproliferative activity against the studied cell lines, the most effective were the 2′-hydroxy-2″,5″-dimethoxychalcone and 2′-hydroxy-4′,6′-dimethoxychalcone. 2′-Hydroxychalcone and the two most active derivatives induced apoptosis and caspases participation, but some percentage of necrotic cells was also observed. Comparing phosphatidylserine externalization after treatment with the different compounds it was noted that the addition of two methoxy groups increased the proapoptotic potential. The most active compounds triggered DNA damage even in the cell lines resistant to chalcone-induced apoptosis. The results confirmed that the analogues could have anticancer potential in the treatment of canine lymphoma or leukemia.


Author(s):  
Ya-Nan Li ◽  
Ni Ning ◽  
Lei Song ◽  
Yun Geng ◽  
Jun-Ting Fan ◽  
...  

Background: Deoxypodophyllotoxin, isolated from theTraditional Chinese Medicine Anthriscus sylvestris, is well-known because of its significant antitumor activity with strong toxicity in vitro and in vivo. Objective: In this article, we synthesized a series of deoxypodophyllotoxin derivatives, and evaluated their antitumor effectiveness.Methods:The anti tumor activity of deoxypodophyllotoxin derivatives was investigated by the MTT method. Apoptosis percentage was measured by flow cytometer analysis using Annexin-V-FITC. Results: The derivatives revealed obvious cytotoxicity in the MTT assay by decreasing the number of late cancer cells. The decrease of Bcl-2/Bax could be observed in MCF-7, HepG2, HT-29 andMG-63 using Annexin V-FITC. The ratio of Bcl-2/Bax in the administration group was decreased, which was determined by the ELISA kit. Conclusion: The derivatives of deoxypodophyllotoxin could induce apoptosis in tumor cell lines by influencing Bcl-2/Bax.


Biologia ◽  
2021 ◽  
Author(s):  
Neslihan Tekin Karacaer ◽  
Barış Kerimoğlu ◽  
Talat Baran ◽  
Mehtap Tarhan ◽  
Ayfer Menteş ◽  
...  

1995 ◽  
Vol 19 (10) ◽  
pp. 681-691 ◽  
Author(s):  
H.G. Drexler ◽  
H. Quentmeier ◽  
R.A.F. MacLeod ◽  
C.C. Uphoff ◽  
Z.-B. Hu

Blood ◽  
2008 ◽  
Vol 112 (3) ◽  
pp. 805-813 ◽  
Author(s):  
Jianchang Yang ◽  
Li Chai ◽  
Chong Gao ◽  
Taylor C. Fowles ◽  
Zaida Alipio ◽  
...  

Abstract Increasing studies suggest that SALL4 may play vital roles in leukemogenesis and stem cell phenotypes. We have mapped the global gene targets of SALL4 using chromatin immunoprecipitation followed by microarray hybridization and identified more than 2000 high-confidence, SALL4-binding genes in the human acute promyelocytic leukemic cell line, NB4. Analysis of SALL4-binding sites reveals that genes involved in cell death, cancer, DNA replication/repair, and cell cycle were highly enriched (P < .05). These genes include 38 important apoptosis-inducing genes (TNF, TP53, PTEN, CARD9, CARD11, CYCS, LTA) and apoptosis-inhibiting genes (Bmi-1, BCL2, XIAP, DAD1, TEGT). Real-time polymerase chain reaction has shown that expression levels of these genes changed significantly after SALL4 knockdown, which ubiquitously led to cell apoptosis. Flow cytometry revealed that reduction of SALL4 expression in NB4 and other leukemia cell lines dramatically increased caspase-3, annexin V, and DNA fragmentation activity. Bromodeoxyuridine-incorporation assays showed decreased numbers of S-phase cells and increased numbers of G1- and G2-phase cells indicating reduced DNA synthesis, consistent with results from cell proliferation assays. In addition, NB4 cells that express low levels of SALL4 have significantly decreased tumorigenecity in immunodeficient mice. Our studies provide a foundation in the development of leukemia stem cell–specific therapy by targeting SALL4.


Drug Research ◽  
2017 ◽  
Vol 68 (02) ◽  
pp. 100-103 ◽  
Author(s):  
Pratap Acharya ◽  
Ranju Bansal ◽  
Prashant Kharkar

AbstractHybrids of 16E-arylidene steroids and nitrogen mustard have been synthesized and evaluated for their in vitro cytotoxic activity to develop tissue specific antineoplastic agents from steroids. These hybrids displayed specificity towards leukemia cell lines, however somewhat reduced potency was observed in comparison with the earlier reported 16E-arylidene steroids. The in silico reverse screening experiments were employed to find out the probable pharmacological mechanism of these hybrids. Molecular docking studies suggested glucocorticoid receptors as a probable target for the antileukemic action of these steroid-nitrogen mustard hybrids.


Radiology ◽  
1981 ◽  
Vol 139 (2) ◽  
pp. 485-487 ◽  
Author(s):  
R R Weichselbaum ◽  
J S Greenberger ◽  
A Schmidt ◽  
A Karpas ◽  
W C Moloney ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
L. I. Nagy ◽  
L. Z. Fehér ◽  
G. J. Szebeni ◽  
M. Gyuris ◽  
P. Sipos ◽  
...  

Combination therapy of bortezomib with other chemotherapeutics is an emerging treatment strategy. Since both curcumin and bortezomib inhibit NF-κB, we tested the effects of their combination on leukemia cells. To improve potency, a novel Mannich-type curcumin derivative, C-150, was synthesized. Curcumin and its analogue showed potent antiproliferative and apoptotic effects on the human leukemia cell line, HL60, with different potency but similar additive properties with bortezomib. Additive antiproliferative effects were correlated well with LPS-induced NF-κB inhibition results. Gene expression data on cell cycle and apoptosis related genes, obtained by high-throughput QPCR, showed that curcumin and its analogue act through similar signaling pathways. In correlation with in vitro results similar additive effect could be obsereved in SCID mice inoculated systemically with HL60 cells. C-150 in a liposomal formulation given intravenously in combination with bortezomib was more efficient than either of the drugs alone. As our novel curcumin analogue exerted anticancer effects in leukemic cells at submicromolar concentration in vitro and at 3 mg/kg dose in vivo, which was potentiated by bortezomib, it holds a great promise as a future therapeutic agent in the treatment of leukemia alone or in combination.


Sign in / Sign up

Export Citation Format

Share Document