scholarly journals Investigating the Influence of Column Depth on the Treatment of Textile Wastewater Using Natural Zeolite

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7030
Author(s):  
Timoth Mkilima ◽  
Kulyash Meiramkulova ◽  
Ubaidulayeva Nurbala ◽  
Amanbek Zandybay ◽  
Mansur Khusainov ◽  
...  

Textile industry production processes generate one of the most highly polluted wastewaters in the world. Unfortunately, the field is also challenged by the availability of relatively cheap and highly effective technologies for wastewater purification. The application of natural zeolite as a depth filter offers an alternative and potential approach for textile wastewater treatment. The performance of a depth filter treatment system can be deeply affected by the column depth and the characteristics of the wastewater to be treated. Regrettably, the information on the potential of these filter materials for the purification of textile wastewater is still scarce. Therefore, this study investigated the potential applicability of natural zeolite in terms of column depth for the treatment of textile wastewater. From the analysis results, it was observed that the filtration efficiencies were relatively low (6.1 to 13.7%) for some parameters such as total dissolved solids, electrical conductivity, chemical oxygen demand, and sodium chloride when the wastewater samples were subjected to the 0.5 m column depth. Relatively high efficiency of 82 and 93.8% was observed from color and total suspended solids, respectively, when the wastewater samples were subjected to the 0.5 m column depth. Generally, the 0.75 m column depth achieved removal efficiencies ranging from 52.3% to 97.5%, whereas the 1 m column depth achieved removal efficiencies ranging from 86.9% to 99.4%. The highest removal efficiency was achieved with a combination of total suspended solids and 1 m column depth (99.4%). In summary, the treatment approach was observed to be highly effective for the removal of total suspended solids, with a 93.8% removal efficiency when the wastewater was subjected to the 0.5 m column depth, 97.5% for 0.75 m column depth, and 99.4% for 1 m column depth. Moreover, up to 218.233 mg of color per g of the filter material was captured. The results derived in this study provide useful information towards the potential applicability of natural zeolite in the textile wastewater treatment field.

2016 ◽  
Vol 75 (3) ◽  
pp. 629-642 ◽  
Author(s):  
Feriel Bouatay ◽  
Nesrine Eljebsi ◽  
Sonia Dridi-Dhaouadi ◽  
Farouk Mhenni

The Vicia faba membranes are an abundant and a low cost product. In the present research paper, the extracted Vicia faba mucilage was tested as an eco-friendly flocculant for textile wastewater treatment. Its performance as flocculant, in decolorization, chemical oxygen demand (COD) removal and the concentration of total suspended solids was checked. The natural extracted product was characterized using infrared spectroscopy. The total sugars were determined in the extracted product. The effect study, followed by an optimization and modeling analysis, of some experimental parameters on the coagulation–flocculation performance, using Vicia faba mucilage (as a flocculant), combined with aluminum sulfate (as a coagulant), showed that the best conditions for the flocculation process were pH of the effluent about 7, flocculant dose about 6.75 mg/L, flocculation mixing time about 3 min and flocculation mixing speed about 30 rpm, leading to a decolorization equal to 92.32%, COD removal of about 97.52% and total suspended solids of about 15.3 mg/L. A comparison study between the flocculation performance of commercial reagents and the bio-agent showed that the natural product presented a good flocculation performance.


1995 ◽  
Vol 31 (12) ◽  
pp. 171-183 ◽  
Author(s):  
M. M. Saqqar ◽  
M. B. Pescod

The performance of the primary anaerobic pond at the Alsamra Wastewater Treatment Plant in Jordan was monitored over 48 months. Overall averages for the removal efficiencies of BOD5, COD and suspended solids were 53%, 53% and 74%, respectively. An improvement in removal efficiency with increase in pond water temperature was demonstrated. A model, which takes into account the variability of raw wastewater at different locations, has been developed to describe the performance of a primary anaerobic pond in terms of a settleability ratio for the raw wastewater. The model has been verified by illustrating the high correlation between actual and predicted pond performance.


2012 ◽  
Vol 441 ◽  
pp. 589-592
Author(s):  
Zhi Min Fu ◽  
Yu Gao Zhang ◽  
Xiao Jun Wang

A combined process of biological wriggle bed and ozone biological aerated filter was utilized to treat textile wastewater. Results showed that COD removal efficiency was almost 90.4%. The average effluent COD was 85.87 mg/L. The effluent colority was 64-32 times. This study indicated that the combined process is potentially useful for treating textile wastewater.


2018 ◽  
Vol 41 (2) ◽  
pp. 165-174
Author(s):  
Mahmudur Rahman ◽  
Masud Rana ◽  
Zinia Nasreen ◽  
Md Mainul Hossain ◽  
Ayesha Sharmin

Results on the applicability of microwave assisted synthesized poly(diallyldimethyl ammonium chloride) (polyDADMAC) in reactive dye containing textile wastewater treatment are reported. Diallyldimethylammonium chloride and poly(diallyldimethylammonium chloride) have been characterized by spectral means. The microwave assisted synthesized polyDADMAC has shown some effectiveness in textile wastewater treatment. COD removal efficiency of actual textile wastewater is below 30% whereas the standard dye sample shows about 50-60% COD removal efficiency. TDS and TSS also decreased after treatment of the wastewater with polyDADMAC.Journal of Bangladesh Academy of Sciences, Vol. 41, No. 2, 165-174, 2017


2020 ◽  
Vol 10 (23) ◽  
pp. 8687
Author(s):  
Eugenia Teodora Iacob Tudose ◽  
Carmen Zaharia

Spinning disc (SD) technology has been successfully applied, for the first time, in real textile wastewater treatment with no other additional processing. The SD efficiency was investigated using real textile effluents to study the color and suspended solids removals at different effluent-supplying flowrates (10–30 L/h) and different disc rotational speeds (100–1500 rpm) with good experimental results; thus, it can minimize the polluting loads within a short time period. Furthermore, within this study, process modeling and its classical optimization were applied to SD technology for wastewater treatment. The experiments were organized according to an active central composite rotatable 23 order design, considering as independent variables the wastewater flowrate, rotational speed, and operating time and, as optimization criteria, the suspended solids removal and discoloration degree. Overall, this novel study proved that the SD technology applied in textile effluent treatment is a suitable alternative to a primary mechanical step.


2018 ◽  
Vol 78 (9) ◽  
pp. 1879-1892 ◽  
Author(s):  
Md Khalekuzzaman ◽  
Muhammed Alamgir ◽  
Mehedi Hasan ◽  
Md Nahid Hasan

Abstract In this research, a hybrid anaerobic baffled reactor (HABR) configuration was proposed consisting of a front sedimentation chamber and four regular baffled chambers followed by two floated filter media chambers for the treatment of domestic wastewater. Performance comparison of uninsulated and insulated HABRs was carried out operating at warm temperature (18.6–37.6 °C) under variable HRTs (30 h and 20 h). The study suggests that almost similar chemical oxygen demand (91% vs 88%), total suspended solids (90% vs 95%), turbidity (98% vs 97%), and volatile suspended solids (90% vs 93%) removal efficiencies were obtained for uninsulated and insulated HABRs. Higher removal of total nitrogen (TN) of 41%, NH4+-N of 44%, and NO3−-N of 91% were achieved by the insulated HABR compared to TN of 37%, NH4+-N of 36%, and NO3−-N of 84% by the uninsulated HABR, whereas lower PO43− removal efficiency of 17% was found in the insulated HABR compared to 24% in the uninsulated HABR. This indicated insulation increased nitrogen removal efficiencies by 4% for TN, 8% for NH4+-N and 7% for NO3−-N, but decreased PO43−removal efficiency by 7%.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 256
Author(s):  
Kulyash Meiramkulova ◽  
Davud Devrishov ◽  
Mikhail Zhumagulov ◽  
Sholpan Arystanova ◽  
Zhaskhaiyr Karagoishin ◽  
...  

Industrial activities produce a variety of pollutants that may not be easily treated using centralized wastewater treatment systems based on a single treatment unit. The variability of the pollutants brings the importance of industrial-specific integrated wastewater treatment plants such as integrated membrane filtration systems. However, the performance of a membrane filtration process can be highly affected by the presence of high amounts of suspended particles in the raw wastewater. Therefore, proper selection of a pre-treatment unit prior to a membrane filtration wastewater treatment system is a key aspect of its performance. This study investigated the performance of an integrated membrane filtration treatment system connected to an electrochemical process (pre-treatment) on the purification of a poultry slaughterhouse wastewater toward achieving a high-quality effluent. The industrial-scale treatment plant installed at the Izhevsk Production Corporative (PC) poultry farm in Kazakhstan is composed of an electrochemical, ultrafiltration (UF), and reverse osmosis (RO) as the main treatment units. From the analysis results, the electrochemical pre-treatment unit was observed to be highly effective for the removal of some physicochemical parameters such as turbidity, color, total suspended solids, total iron, aluminum, chemical oxygen demand, and biochemical oxygen demand; with removal efficiency ranging from 71 to 85%. The low removal efficiency of the pre-treatment system was also observed from free and total chlorine, nitrites, nitrates, phosphates, and ammonium nitrogen; with removal efficiency ranging from 4 to 45%. While in general, the overall treatment train was observed to be highly efficient for some physicochemical parameters such as turbidity, color, total suspended solids, as well as chemical and biochemical oxygen demand; maintaining almost 100% removal efficiency throughout the study period. Also, the high removal efficiency of the electrochemical pre-treatment processes led to a relatively low rate of cake formation on the membrane filters.


2009 ◽  
Vol 59 (9) ◽  
pp. 1817-1821 ◽  
Author(s):  
Thalla Arun Kumar ◽  
S. Saravanan

The performance of a pilot scale aerobic fluidized bed biofilm process and chemical coagulation for textile wastewater treatment was studied. In order to enhance biological treatment efficiency of textile wastewater, poly urethane cubes were incorporated as a supporting media for attached growth. Fenton's reagent was used as a coagulant in the present study. The fluidized bed biofilm process was operated at four HRTs (3, 4.5, 6 and 8 hour) and the results showed that the COD removal efficiency increased from 69% to 94% when the HRT increased from 3 to 4.5 and there of the removal efficiency remained constant around 94%, even though using relatively low MLSS concentration and short sludge retention time. COD and TDS removals of 94.2% and 93.3% were achieved by overall combined process (FABR + Coagulation aided Sedimentation). After the treatment there is remarkable decrease in colour in addition to COD and TDS. This combined process was highly competitive in comparison to the other similar combined systems. It was concluded that this combined process was successfully employed and much effectively decreased they COD, TDS and color of textile wastewater treatment at pilot scale.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2003
Author(s):  
Carmen Zaharia ◽  
Florin Leon ◽  
Silvia Curteanu ◽  
Eugenia Teodora Iacob-Tudose

The paper presents an experimental study regarding the treatment of a real textile wastewater using the spinning disc (SD) technology, either individually or associated with an advanced Fenton oxidation step. The SD efficiency was investigated by studying the color, suspended solids, or turbidity removals, at distinctive feeding flowrates (10–30 L/h) and disc rotating speeds (100–1500 rpm). The data revealed increasing removal trends and allowed to establish the highest removal values. Based on obtained experimental results, the wastewater treatment efficiency by SD technology was reasonably good and thus, the WW indicators can be improved within relatively short periods of time. Additionally, based on supervised learning algorithms, the study includes treatment modeling for turbidity and color removal, followed by turbidity removal optimization relying on the best learned models. Satisfactory results obtained with the modeling and optimization procedures provide useful predictions for the approached treatment processes. Furthermore, within this study, a Fenton oxidation process was applied to SD technology to minimize the color and solids content. The influence of pH, hydrogen peroxide and ferrous ions concentrations was also investigated in order to establish the highest removal efficiencies. Overall, the SD technology applied in textile effluents treatment proved to be an appropriate and efficient alternative to classical mechanical step applied within the primary treatment step and, when associated with an advanced oxidative process in the secondary step, rendered good improvement, namely of 62.84% and 69.46% for color and respectively, suspended solids removal.


Sign in / Sign up

Export Citation Format

Share Document