scholarly journals Mapping the Chemistry of Hair Strands by Mass Spectrometry Imaging—A Review

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7522
Author(s):  
Mai H. Philipsen ◽  
Emma R. Haxen ◽  
Auraya Manaprasertsak ◽  
Per Malmberg ◽  
Emma U. Hammarlund

Hair can record chemical information reflecting our living conditions, and, therefore, strands of hair have become a potent analytical target within the biological and forensic sciences. While early efforts focused on analyzing complete hair strands in bulk, high spatial resolution mass spectrometry imaging (MSI) has recently come to the forefront of chemical hair-strand analysis. MSI techniques offer a localized analysis, requiring fewer de-contamination procedures per default and making it possible to map the distribution of analytes on and within individual hair strands. Applying the techniques to hair samples has proven particularly useful in investigations quantifying the exposure to, and uptake of, toxins or drugs. Overall, MSI, combined with optimized sample preparation protocols, has improved precision and accuracy for identifying several elemental and molecular species in single strands of hair. Here, we review different sample preparation protocols and use cases with a view to make the methodology more accessible to researchers outside of the field of forensic science. We conclude that—although some challenges remain, including contamination issues and matrix effects—MSI offers unique opportunities for obtaining highly resolved spatial information of several compounds simultaneously across hair surfaces.

Author(s):  
Riccardo Zecchi ◽  
Pietro Franceschi ◽  
Laura Tigli ◽  
Davide Amidani ◽  
Chiara Catozzi ◽  
...  

AbstractCorticosteroids as budesonide can be effective in reducing topic inflammation processes in different organs. Therapeutic use of budesonide in respiratory diseases, like asthma, chronic obstructive pulmonary disease, and allergic rhinitis is well known. However, the pulmonary distribution of budesonide is not well understood, mainly due to the difficulties in tracing the molecule in lung samples without the addition of a label. In this paper, we present a matrix-assisted laser desorption/ionization mass spectrometry imaging protocol that can be used to visualize the pulmonary distribution of budesonide administered to a surfactant-depleted adult rabbit. Considering that budesonide is not easily ionized by MALDI, we developed an on-tissue derivatization method with Girard’s reagent P followed by ferulic acid deposition as MALDI matrix. Interestingly, this sample preparation protocol results as a very effective strategy to raise the sensitivity towards not only budesonide but also other corticosteroids, allowing us to track its distribution and quantify the drug inside lung samples. Graphical abstract


2018 ◽  
Vol 13 (1) ◽  
pp. 1800035 ◽  
Author(s):  
Katharina Kriegsmann ◽  
Rémi Longuespée ◽  
Michael Hundemer ◽  
Christiane Zgorzelski ◽  
Rita Casadonte ◽  
...  

Author(s):  
Jongsook Rhee ◽  
Jihyun Kim ◽  
Moonhee Jang ◽  
Ilchung Shi ◽  
Sangki Lee

Abstract This study evaluated hair samples from 28 subjects who had measurable ketamine levels among the samples requested from 2016 to 2017 into Seoul Institute National Forensic Service in Korea. Ketamine in the hair was extracted by using a solution of 1% hydrochloric acid in methanol for 16 h. Extracts were analyzed using gas chromatography mass spectrometry (GC-MS) or liquid chromatography tandem mass spectrometry (LC-MS-MS). LC-MS-MS method was validated by determining the limit of detection (LOD), limit of quantitation (LOQ), linearity, intra- and inter-accuracy, precision, and matrix effects. In 59 ketamine-positive hair or hair segments from 28 ketamine abusers, the ketamine concentration was found to be in the range of 0.011-335.8 ng/mg (mean, 13.6; median, 1.8), and the norketamine concentration was found to be in the range of 0.001-35.7 ng/mg (mean, 7.5; median, 0.44). The ratio of norketamine to ketamine concentration in hair was in the range of 0.01-1.46 (mean, 0.34; median, 0.26). The distribution of ketamine concentration in hair samples was as follows: 0.01-0.1 ng/mg in 11 samples (18.6%), 0.1-5 ng/mg in 33 samples (55.9%), 5-10 ng/mg in 4 samples (6.8%), 10-15 ng/mg in 2 samples (3.4%), 15-20 ng/mg in 4 samples (6.8%), 40-45 ng/mg in 2 samples (3.4%), 45-50 ng/mg in 1 samples 1.7%) and >100 ng/mg in only 2 samples (3.4%). In the hair of ketamine-abusers, 26 of 28 subjects had simultaneously ketamine with detectable levels of other controlled drugs, including MDMA (n=9), MA (n=3), MDMA/MA (n=3), MDMA/PMA (n=3), MDMA/PMA/MA (n=2), cocaine (n=1), and other drugs (n=5, propofol, zolpidem or benzodiazepines). In most of the hair samples were detected ketamine with other controlled drugs: MDMA (60.7%), MA (28.6%), PMA(17.9%), zolpidem (17.9%), and propofol (14.3%) in the frequency of abuse. In conclusion, most of the ketamine-abusers (92.9%) would be polydrug abusers, who were concomitantly abusing other controlled substances.


2016 ◽  
Vol 65 (3) ◽  
pp. 669-672 ◽  
Author(s):  
Cuiwen He ◽  
Loren G Fong ◽  
Stephen G Young ◽  
Haibo Jiang

Over the past few decades, several approaches have been used to image lipids in cells and tissues, but most have limited spatial resolution and sensitivity. Here, we discuss a relatively new approach, nanoscale secondary ion mass spectrometry imaging, that makes it possible to visualize lipids in cells and tissues in a quantitative fashion and with high spatial resolution and high sensitivity.


Author(s):  
Daisy Unsihuay ◽  
Daniela Mesa Sanchez ◽  
Julia Laskin

Mass spectrometry imaging (MSI) is a powerful, label-free technique that provides detailed maps of hundreds of molecules in complex samples with high sensitivity and subcellular spatial resolution. Accurate quantification in MSI relies on a detailed understanding of matrix effects associated with the ionization process along with evaluation of the extraction efficiency and mass-dependent ion losses occurring in the analysis step. We present a critical summary of approaches developed for quantitative MSI of metabolites, lipids, and proteins in biological tissues and discuss their current and future applications. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 72 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document