scholarly journals Panos-Fermented Extract-Mediated Nanoemulsion: Preparation, Characterization, and In Vitro Anti-Inflammatory Effects on RAW 264.7 Cells

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 218
Author(s):  
Rui Zhang ◽  
Esrat Jahan Rupa ◽  
Siwen Zheng ◽  
Jinnatun Nahar ◽  
Deok Chun Yang ◽  
...  

This study focused on developing Panos nanoemulsion (P-NE) and enhancing the anti-inflammatory efficacy for the treatment of inflammation. The effects of P-NE were evaluated in terms of Nitric oxide (NO production) in Lipopolysaccharide (LPS), induced RAW 264.7 cells, Reactive oxygen species (ROS) generation using Human Keratinocyte cells (HaCaT), and quantitative polymerase chain reaction (qPCR) analysis. Sea buckthorn oil, Tween 80, and span 80 were used and optimize the process. Panos extract (P-Ext) was prepared using the fermentation process. Further high-energy ultra-sonication was used for the preparation of P-NE. The developed nanoemulsion (NE) was characterized using different analytical methods. Field emission transmission electron microscopy (FE-TEM) analyzed the spherical shape and morphology. In addition, stability was analyzed by Dynamic light scattering (DLS) analysis, where particle size was analyzed 83 nm, and Zeta potential −28.20 ± 2 (mV). Furthermore, 90 days of stability was tested using different temperatures conditions where excellent stability was observed. P-NE are non-toxic in (HaCaT), and RAW264.7 cells up to 100 µg/mL further showed effects on ROS and NO production of the cells at 50 µg/mL. The qPCR analysis demonstrated the suppression of pro-inflammatory mediators for (Cox 2, IL-6, IL-1β, and TNF-α, NF-κB, Ikkα, and iNOS) gene expression. The prepared NE exhibited anti-inflammatory effects, demonstrating its potential as a safe and non-toxic nanomedicine.

2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Lei Wang ◽  
You-Jin Jeon ◽  
Jae-Il Kim

Abstract Background Inflammation plays a crucial role in the pathogenesis of many diseases such as arthritis and atherosclerosis. In the present study, we evaluated anti-inflammatory activity of sterol-rich fraction prepared from Spirogyra sp., a freshwater green alga, in an effort to find bioactive extracts derived from natural sources. Methods The sterol content of ethanol extract of Spirogyra sp. (SPE) was enriched by fractionation with hexane (SPEH), resulting 6.7 times higher than SPE. Using this fraction, the in vitro and in vivo anti-inflammatory activities were evaluated in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells and zebrafish. Results SPEH effectively and dose-dependently decreased the production of nitric oxide (NO) and prostaglandin E2 (PGE2). SPEH suppressed the production of pro-inflammatory cytokines including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β through downregulating nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW 264.7 cells without cytotoxicity. The in vivo test results indicated that SPEH significantly and dose-dependently reduced reactive oxygen species (ROS) generation, cell death, and NO production in LPS-stimulated zebrafish. Conclusions These results demonstrate that SPEH possesses strong in vitro and in vivo anti-inflammatory activities and has the potential to be used as healthcare or pharmaceutical material for the treatment of inflammatory diseases.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3910 ◽  
Author(s):  
Min-Seon Kim ◽  
Jin-Soo Park ◽  
You Chul Chung ◽  
Sungchan Jang ◽  
Chang-Gu Hyun ◽  
...  

Biorenovation is a microbial enzyme-catalyzed structural modification of organic compounds with the potential benefits of reduced toxicity and improved biological properties relative to their precursor compounds. In this study, we synthesized a novel compound verified as formononetin 7-O-phosphate (FMP) from formononetin (FM) using microbial biotransformation. We further compared the anti-inflammatory properties of FMP to FM in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. We observed that cell viabilities and inhibitory effects on LPS-induced nitric oxide (NO) production were greater in FMP-treated RAW 264.7 cells than in their FM-treated counterparts. In addition, FMP treatment suppressed the production of proinflammatory cytokines such as prostaglandin-E2 (PGE2), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner and concomitantly decreased the mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). We also found that FMP exerted its anti-inflammatory effects through the downregulation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa B (NF-κB) signaling pathways. In conclusion, we generated a novel anti-inflammatory compound using biorenovation and demonstrated its efficacy in cell-based in vitro assays.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5733
Author(s):  
Esrat Jahan Rupa ◽  
Jin Feng Li ◽  
Muhammad Huzaifa Arif ◽  
Han Yaxi ◽  
Aditi Mitra Puja ◽  
...  

This study aimed to produce and optimize a Cordyceps militaris-based oil-in-water (O/W) nanoemulsion (NE) encapsulated in sea buckthorn oil (SBT) using an ultrasonication process. Herein, a nonionic surfactant (Tween 80) and chitosan cosurfactant were used as emulsifying agents. The Cordyceps nanoemulsion (COR-NE) was characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and field-emission transmission electron microscope (FE-TEM). The DLS analyses revealed that the NE droplets were 87.0 ± 2.1 nm in diameter, with a PDI value of 0.089 ± 0.023, and zeta potential of −26.20 ± 2. The small size, low PDI, and stable zeta potential highlighted the excellent stability of the NE. The NE was tested for stability under different temperature (4 °C, 25 °C, and 60 °C) and storage conditions for 3 months where 4 °C did not affect the stability. Finally, in vitro cytotoxicity and anti-inflammatory activity were assessed. The results suggested that the NE was not toxic to RAW 264.7 or HaCaT (human keratinocyte) cell lines at up to 100 µL/mL. Anti-inflammatory activity in liposaccharides (LPS)-induced RAW 264.7 cells was evident at 50 µg/mL and showed inhibition of NO production and downregulation of pro-inflammatory gene expression. Further, the NE exhibited good antioxidant (2.96 ± 0.10 mg/mL) activity and inhibited E. coli and S. aureus bacterial growth. Overall, the COR-NE had greater efficacy than the free extract and added significant value for future biomedical and cosmetics applications.


Author(s):  
Adek Zamrud Adnan ◽  
Muhammad Taher ◽  
Tika Afriani ◽  
Annisa Fauzana ◽  
Dewi Imelda Roesma ◽  
...  

 Objective: The aim of this study was to investigate in vitro anti-inflammatory activity of tinocrisposide using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophage cells. Tinocrisposide is a furano diterpene glycoside that was isolated in our previous study from Tinospora crispa.Methods: Anti-inflammatory effect was quantified spectrometrically using Griess method by measuring nitric oxide (NO) production after the addition of Griess reagent.Results: The sample concentrations of 1, 5, 25, 50, and 100 μM and 100 μM of dexamethasone (positive control) have been tested against the LPS-stimulated RAW 264.7 cells, and the results showed NO level production of 39.23, 34.00, 28.9, 20.25, 16.3, and 13.68 μM, respectively, and the inhibition level of 22.67, 33.00, 43.03, 60.10, 68.00, and 73%, respectively.Conclusions: From the study, it could be concluded that tinocrisposide was able to inhibit the formation of NO in the LPS-stimulated RAW 264.7 cells in concentration activity-dependent manner, with half-maximal inhibition concentration 46.92 μM. It can be developed as anti-inflammatory candidate drug because NO is a reactive nitrogen species which is produced by NO synthase. The production of NO has been established as a mediator in inflammatory diseases.


2020 ◽  
Vol 21 (9) ◽  
pp. 3146
Author(s):  
Arturo Navas ◽  
Fatin Jannus ◽  
Belén Fernández ◽  
Javier Cepeda ◽  
Marta Medina O’Donnell ◽  
...  

We have designed and synthesized two novel cobalt coordination compounds using bumetanide (bum) and indomethacin (ind) therapeutic agents. The anti-inflammatory effects of cobalt metal complexes with ind and bum were assayed in lipopolysaccharide stimulated RAW 264.7 macrophages by inhibition of nitric oxide production. Firstly, we determined the cytotoxicity and the anti-inflammatory potential of the cobalt compounds and ind and bum ligands in RAW 264.7 cells. Indomethacin-based metal complex was able to inhibit the NO production up to 35% in a concentration-dependent manner without showing cytotoxicity, showing around 6–37 times more effective than indomethacin. Cell cycle analysis showed that the inhibition of NO production was accompanied by a reversion of the differentiation processes in LPS-stimulated RAW 264.7 cells, due to a decreased of cell percentage in G0/G1 phase, with the corresponding increase in the number of cells in S phase. These two materials have mononuclear structures and show slow relaxation of magnetization. Moreover, both compounds show anti-diabetic activity with low in vitro cell toxicities. The formation of metal complexes with bioactive ligands is a new and promising strategy to find new compounds with high and enhanced biochemical properties and promises to be a field of great interest.


2019 ◽  
Vol 14 (1) ◽  
pp. 1934578X1901400 ◽  
Author(s):  
Karoline Costa Lima ◽  
Domingos Tabajara de Oliveira Martins ◽  
Antonio Macho ◽  
Ruberlei Godinho de Oliveira ◽  
Eduarda Pavan ◽  
...  

Phytochemical investigation of the hydroethanolic extract of the inner stem bark of Dilodendron bipinnatum (HEDb) by column chromatography led to the separation of three major fractions: a) a mixture of phytosterols (ST mixture), including β-sitosterol (1), stigmasterol (2) and campesterol (3); b) a mixture of 3- O-β-glucopyranosyl-β-sitosterol (4) and 3- O-β-glucopyranosyl-stigmasterol (5) (SGP mixture); and c) epicatechin (6), as a single isolate. Their structures were determined by spectrometric analysis using 1H- and 13C-NMR spectroscopy, and GC-MS. The safety profile of the SGP mixture, when evaluated on RAW 264.7 cells, using the alamar blue® assay, exhibited no cytotoxic effects. The anti-inflammatory activity was comparatively analyzed in vivo using the lipopolysaccharide (LPS)-induced peritonitis model in mice, showing a strong reduction of leukocyte migration to the peritoneal cavity using both the SGP mixture and the HEDb. In vitro assessment of nitric oxide (NO) in the macrophagic RAW 264.7 cell line showed an inhibition of NO by the SGP mixture when cells were stimulated with LPS. Taken together, the results show an important contribution of the sterol glucoside mixture on the anti-inflammatory activity of HEDb. Also, one of the mechanisms for such inhibition seems to be a direct inhibition of NO production in stimulated macrophages.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1851
Author(s):  
Hong-Bin Li ◽  
Qing-Mei Feng ◽  
Ling-Xia Zhang ◽  
Jing Wang ◽  
Jun Chi ◽  
...  

Four new gallate derivatives—ornusgallate A, ent-cornusgallate A, cornusgallate B and C (1a, 1b, 2, 3)—were isolated from the wine-processed fruit of Cornus officinalis. Among them, 1a and 1b are new natural compounds with novel skeletons. Their chemical structures were elucidated by comprehensive spectroscopy methods including NMR, IR, HRESIMS, UV, ECD spectra and single-crystal X-ray diffraction analysis. The in vitro anti-inflammatory activities of all compounds were assayed in RAW 264.7 cells by assessing LPS-induced NO production. As the result, all compounds exhibited anti-inflammatory activities at attested concentrations. Among the tested compounds, compound 2 exhibited the strongest anti- inflammatory activity.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110076
Author(s):  
Sheng Pan ◽  
Zi-Guan Zhu

A new flavonol named 6-(2'',3''-epoxy-3''-methylbutyl)-resokaempferol (1), together with five known compounds (2-6) were isolated from the EtOAc-soluble extract of the aerial part of Saussurea involucrata. Their structures were elucidated on the basis of spectroscopic methods. All compounds were evaluated for their anti-inflammatory effects by measuring the production of nitric oxide (NO) and TNF-α in vitro. Among them, compound 1 showed potential inhibitory activity on the production of NO and TNF-α in LPS-induced RAW 264.7 cells with IC50 values of 48.0 ± 1.5 and 41.4 ± 1.7 µM, respectively.


Steroids ◽  
2021 ◽  
pp. 108830
Author(s):  
Xiaorui Cai ◽  
Fei Sha ◽  
Chuanyi Zhao ◽  
Zhiwei Zheng ◽  
Shulin Zhao ◽  
...  

2019 ◽  
Author(s):  
Murugesh Kandasamy ◽  
Kit-Kay Mak ◽  
Thangaraj Devadoss ◽  
Punniyakoti Veeraveedu Thanikachalam ◽  
Raghavendra Sakirolla ◽  
...  

Abstract The transcription factor Nuclear factor erythroid-2-related factor 2 (NRF2) and its principal repressive regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (KEAP1), are critical in the regulation of inflammation, as well as maintenance of homeostasis. Thus, NRF2 activation provides cytoprotection against numerous inflammatory disorders. N-nicotinoylquinoxaline-2-carbohdyrazide (NQC) was designed by combining the important pharmacophoric features of bioactive compounds reported in the literature. NQC was synthesised and characterised using spectroscopic techniques. The compound was tested for its anti-inflammatory effect using LPSEc induced inflammation in mouse macrophages (RAW 264.7 cells). The effect of NQC on inflammatory cytokines was measured using ELISA. The Nrf2 activity of the compound NQC was determined using ‘Keap1:Nrf2 Inhibitor Screening Assay Kit’. To obtain the insights on NQC’s activity on Nrf2, molecular docking studies were performed using Schrodinger suite. The metabolic stability of NQC was determined using mouse, rat and human microsomes. NQC was found to be non-toxic until the dose of 50 µM on RAW 264.7 cells. The NQC showed potent anti-inflammatory effect in an in vitro model of Lipopolysaccharide (LPS) stimulated murine macrophages (RAW 264.7 cells) with an IC50 value 26.13 ± 1.17 µM. The NQC dose-dependently down regulated the pro-inflammatory cytokines (Interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α) and inflammatory mediator, prostaglandin E2 (PGE2) with IC50 values 13.27 ± 2.37, 10.13 ± 0.58, 14.41 ± 1.83 and 15.23 ± 0.91 µM respectively. Molecular docking studies confirmed the favourable binding of NQC at Kelch domain of Keap-1. It disrupts the Nrf2 interaction with kelch domain of keap 1 and its IC50 value was 4.21 ± 0.89 µM. The metabolic stability studies of NQC in human, rat and mouse liver microsomes revealed that it is quite stable with half-life values; 59.78 ± 6.73, 52.93 ± 7.81, 28.43 ± 8.13 minutes; microsomal intrinsic clearance values; 22.1 ± 4.31, 26.0 ± 5.17 and 47.13 ± 6.34 µL/min/mg protein; respectively. So, rat has comparable metabolic profile with human, thus, rat could be used for predicting the pharmacokinetics and metabolism of NQC in human. NQC is a new class of NRF2 activator with potent in vitro anti-inflammatory activity and good metabolic stability.


Sign in / Sign up

Export Citation Format

Share Document