scholarly journals A New Flavonol From Saussurea involucrata With Anti-Inflammatory Activity

2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110076
Author(s):  
Sheng Pan ◽  
Zi-Guan Zhu

A new flavonol named 6-(2'',3''-epoxy-3''-methylbutyl)-resokaempferol (1), together with five known compounds (2-6) were isolated from the EtOAc-soluble extract of the aerial part of Saussurea involucrata. Their structures were elucidated on the basis of spectroscopic methods. All compounds were evaluated for their anti-inflammatory effects by measuring the production of nitric oxide (NO) and TNF-α in vitro. Among them, compound 1 showed potential inhibitory activity on the production of NO and TNF-α in LPS-induced RAW 264.7 cells with IC50 values of 48.0 ± 1.5 and 41.4 ± 1.7 µM, respectively.

Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 300
Author(s):  
Moo Rim Kang ◽  
Sun Ah Jo ◽  
Hyunju Lee ◽  
Yeo Dae Yoon ◽  
Joo-Hee Kwon ◽  
...  

Scytonemin is a yellow-green ultraviolet sunscreen pigment present in different genera of aquatic and terrestrial blue-green algae, including marine cyanobacteria. In the present study, the anti-inflammatory activities of scytonemin were evaluated in vitro and in vivo. Topical application of scytonemin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear swelling in BALB/c mice. The expression of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) was also suppressed by scytonemin treatment in the TPA-treated ear of BALB/c mice. In addition, scytonemin inhibited lipopolysaccharide (LPS)-induced production of TNF-α and nitric oxide (NO) in RAW 264.7 cells, a murine macrophage-like cell line, and the mRNA expressions of TNF-α and iNOS were also suppressed by scytonemin in LPS-stimulated RAW 264.7 cells. Further study demonstrated that LPS-induced NF-κB activity was significantly suppressed by scytonemin treatment in RAW 264.7 cells. Our results also showed that the degradation of IκBα and nuclear translocation of the p65 subunit were blocked by scytonemin in LPS-stimulated RAW 264.7 cells. Collectively, these results suggest that scytonemin inhibits skin inflammation by blocking the expression of inflammatory mediators, and the anti-inflammatory effect of scytonemin is mediated, at least in part, by down-regulation of NF-κB activity. Our results also suggest that scytonemin might be used as a multi-function skin care ingredient for UV protection and anti-inflammation.


2016 ◽  
Vol 7 (3) ◽  
pp. 387-396 ◽  
Author(s):  
Y.-W. Liu ◽  
W.-K. Ong ◽  
Y.-W. Su ◽  
C.-C. Hsu ◽  
T.-H. Cheng ◽  
...  

Lactic acid bacteria (LAB) with anti-inflammatory effects may be beneficial to the prevention or treatment for inflammation-related diseases, such as inflammatory bowel diseases. In an in vitro assay, heat-killed Lactobacillus brevis K65 (K65) reduced lipopolysaccharide-induced production of nitric oxide, tumour necrosis factor (TNF)-α and prostaglandin E2 in RAW 264.7 cells. In RAW 264.7 cells stably expressing an ind=ucible nitric oxide synthase (iNOS) reporter, viable K65 showed greater inhibition of iNOS production than its heat-killed form. In order to further examine the in vivo anti-inflammatory effect of K65, viable K65 was orally administered to BALB/c mice before and during the period of dextran sulphate sodium (DSS)-induced ulcerative colitis (UC). K65 improved UC symptoms, including reduced the levels of the pro-inflammatory cytokines, TNF-α, interleukin (IL)-6 and IL-1β, and lowered the activity of myeloperoxidase. Furthermore, K65 inhibited TNF-α, cyclo-oxygenase 2, forkhead box P3, and Toll-like receptor 4 mRNA expression in the colonic tissue of DSS-induced UC mice. Taken together, K65, a LAB with in vitro anti-inflammatory activity showed preventive effects on mice with DSS-induced UC by lowering the expression of inflammatory molecules.


2018 ◽  
Vol 19 (7) ◽  
pp. 2027 ◽  
Author(s):  
Jingyu He ◽  
Xianyuan Lu ◽  
Ting Wei ◽  
Yaqian Dong ◽  
Zheng Cai ◽  
...  

Hedyotis diffusa is a folk herb that is used for treating inflammation-related diseases in Asia. Previous studies have found that iridoids in H. diffusa play an important role in its anti-inflammatory activity. This study aimed to investigate the anti-inflammatory effect and potential mechanism of five iridoids (asperuloside (ASP), asperulosidic acid (ASPA), desacetyl asperulosidic acid (DAA), scandoside methyl ester (SME), and E-6-O-p-coumaroyl scandoside methyl ester (CSME)) that are presented in H. diffusa using lipopolysaccharide (LPS)—induced RAW 264.7 cells. ASP and ASPA significantly decreased the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in parallel with the inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-6 mRNA expression in LPS-induced RAW 264.7 cells. ASP treatment suppressed the phosphorylation of the inhibitors of nuclear factor-kappaB alpha (IκB-α), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). The inhibitory effect of ASPA was similar to that of ASP, except for p38 phosphorylation. In summary, the anti-inflammatory effects of ASP and ASPA are related to the inhibition of inflammatory cytokines and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways, which provides scientific evidence for the potential application of H. diffusa.


2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Lei Wang ◽  
You-Jin Jeon ◽  
Jae-Il Kim

Abstract Background Inflammation plays a crucial role in the pathogenesis of many diseases such as arthritis and atherosclerosis. In the present study, we evaluated anti-inflammatory activity of sterol-rich fraction prepared from Spirogyra sp., a freshwater green alga, in an effort to find bioactive extracts derived from natural sources. Methods The sterol content of ethanol extract of Spirogyra sp. (SPE) was enriched by fractionation with hexane (SPEH), resulting 6.7 times higher than SPE. Using this fraction, the in vitro and in vivo anti-inflammatory activities were evaluated in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells and zebrafish. Results SPEH effectively and dose-dependently decreased the production of nitric oxide (NO) and prostaglandin E2 (PGE2). SPEH suppressed the production of pro-inflammatory cytokines including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β through downregulating nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW 264.7 cells without cytotoxicity. The in vivo test results indicated that SPEH significantly and dose-dependently reduced reactive oxygen species (ROS) generation, cell death, and NO production in LPS-stimulated zebrafish. Conclusions These results demonstrate that SPEH possesses strong in vitro and in vivo anti-inflammatory activities and has the potential to be used as healthcare or pharmaceutical material for the treatment of inflammatory diseases.


Author(s):  
Adek Zamrud Adnan ◽  
Muhammad Taher ◽  
Tika Afriani ◽  
Annisa Fauzana ◽  
Dewi Imelda Roesma ◽  
...  

 Objective: The aim of this study was to investigate in vitro anti-inflammatory activity of tinocrisposide using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophage cells. Tinocrisposide is a furano diterpene glycoside that was isolated in our previous study from Tinospora crispa.Methods: Anti-inflammatory effect was quantified spectrometrically using Griess method by measuring nitric oxide (NO) production after the addition of Griess reagent.Results: The sample concentrations of 1, 5, 25, 50, and 100 μM and 100 μM of dexamethasone (positive control) have been tested against the LPS-stimulated RAW 264.7 cells, and the results showed NO level production of 39.23, 34.00, 28.9, 20.25, 16.3, and 13.68 μM, respectively, and the inhibition level of 22.67, 33.00, 43.03, 60.10, 68.00, and 73%, respectively.Conclusions: From the study, it could be concluded that tinocrisposide was able to inhibit the formation of NO in the LPS-stimulated RAW 264.7 cells in concentration activity-dependent manner, with half-maximal inhibition concentration 46.92 μM. It can be developed as anti-inflammatory candidate drug because NO is a reactive nitrogen species which is produced by NO synthase. The production of NO has been established as a mediator in inflammatory diseases.


2012 ◽  
Vol 40 (04) ◽  
pp. 813-831 ◽  
Author(s):  
You-Chang Oh ◽  
Won-Kyung Cho ◽  
Yun Hee Jeong ◽  
Ga Young Im ◽  
Min Cheol Yang ◽  
...  

Sipjeondaebotang (SJ) has been used as a traditional drug in east-Asian countries. In this study, to provide insight into the biological effects of SJ and SJ fermented by Lactobacillus, we investigated their effects on lipopolysaccharide (LPS)-mediated inflammation in macrophages. The investigation was focused on whether SJ and fermented SJ could inhibit the production of pro-inflammatory mediators such as prostaglandin (PG) E2 and nitric oxide (NO) as well as the expressions of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB in LPS-stimulated RAW 264.7 cells. We found that SJ modestly inhibited LPS-induced PGE2, NO and TNF-α production as well as the expressions of COX-2 and iNOS. Interestingly, fermentation significantly increased its inhibitory effect on the expression of all pro-inflammatory mediators. Furthermore, fermented SJ exhibited increased inhibition of p38 MAPK and c-Jun NH2-terminal kinase (JNK) MAPK phosphorylation as well as NF-κB p65 translocation by reduced IκBα degradation compared with either untreated controls or unfermented SJ. High performance liquid chromatography (HPLC) analysis showed fermentation by Lactobacillus increases liquiritigenin and cinnamyl alcohol contained in SJ, which are known for their anti-inflammatory activities. Finally, SJ fermented by Lactobacillus exerted potent anti-inflammatory activity by inhibiting MAPK and NF-κB signaling in RAW 264.7 cells.


Author(s):  
Chun Whan Choi ◽  
Ju Young Shin ◽  
Changon Seo ◽  
Seong Su Hong ◽  
Eun-Kyung Ahn ◽  
...  

Background: Plants still remain the prime source of drugs for the treatment of inflammation and can provide leads for the development of novel anti-inflammatory agents. Material and methods: An in vitro bioassay guide revealed that the 80% ethanol (EtOH) extract of the whole plant, Amomum tsao-ko (Zingiberaceae), displayed anti-inflammatory activity after assessing its effects on murine macrophage RAW 264.7 cells. Result: Phytochemical study of the 80% EtOH extract of Amomum tsao-ko led to the isolation of eight compounds: 4-hydroxy-3-methoxy-benzoic acid (1), meso-hannokinol (2), (+)-hannokinol (3), coumaric acid (4), 4-hydroxy-benzoic acid (5), (+)-epicatechin (6), (-)-catechin (7), and myrciaphenone A (8). The results indicated that two of the isolated components, (+)-epicatechin (6) and (-)-catechin (7), inhibited the production of nitric oxide (NO) significantly in lipopolysaccharide treated RAW 264.7 cells. Conclusion: LPS-induced interleukin tumor necrosis factor-alpha (TNF-), IL-1β and IL-10 production was also decreased in a dose-dependent manner. In addition, western blot analysis revealed that (+)-epicatechin (6) and (-)-catechin (7) reduced the expression of inducible nitric oxide synthase and inhibited nuclear localization of nuclear factor kappa-B (NF-κB).


2021 ◽  
Vol 22 (15) ◽  
pp. 8158
Author(s):  
Fatin Jannus ◽  
Marta Medina-O’Donnell ◽  
Veronika E. Neubrand ◽  
Milagros Marín ◽  
Maria J. Saez-Lara ◽  
...  

Recent evidence has shown that inflammation can contribute to all tumorigenic states. We have investigated the anti-inflammatory effects of a diamine-PEGylated derivative of oleanolic acid (OADP), in vitro and in vivo with inflammation models. In addition, we have determined the sub-cytotoxic concentrations for anti-inflammatory assays of OADP in RAW 264.7 cells. The inflammatory process began with incubation with lipopolysaccharide (LPS). Nitric oxide production levels were also determined, exceeding 75% inhibition of NO for a concentration of 1 µg/mL of OADP. Cell-cycle analysis showed a reversal of the arrest in the G0/G1 phase in LPS-stimulated RAW 264.7 cells. Furthermore, through Western blot analysis, we have determined the probable molecular mechanism activated by OADP; the inhibition of the expression of cytokines such as TNF-α, IL-1β, iNOS, and COX-2; and the blocking of p-IκBα production in LPS-stimulated RAW 264.7 cells. Finally, we have analyzed the anti-inflammatory action of OADP in a mouse acute ear edema, in male BL/6J mice treated with OADP and tetradecanoyl phorbol acetate (TPA). Treatment with OADP induced greater suppression of edema and decreased the ear thickness 14% more than diclofenac. The development of new derivatives such as OADP with powerful anti-inflammatory effects could represent an effective therapeutic strategy against inflammation and tumorigenic processes.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5351
Author(s):  
Jin-Kyu Kang ◽  
You-Chul Chung ◽  
Chang-Gu Hyun

Persistent inflammatory reactions promote mucosal damage and cause dysfunction, such as pain, swelling, seizures, and fever. Therefore, in this study, in order to explore the anti-inflammatory effect of 6-methylcoumarin (6-MC) and suggest its availability, macrophages were stimulated with lipopolysaccharide (LPS) to conduct an in vitro experiment. The effects of 6-MC on the production and levels of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α) and inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2)) in LPS-stimulated RAW 264.7 cells were examined. The results showed that 6-MC reduced the levels of NO and PGE2 without being cytotoxic. In addition, it was demonstrated that the increase in the expression of pro-inflammatory cytokines caused by LPS stimulation, was decreased in a concentration-dependent manner with 6-MC treatment. Moreover, Western blot results showed that the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which increased with LPS treatment, were decreased by 6-MC treatment. Mechanistic studies revealed that 6-MC reduced the phosphorylation of the mitogen-activated protein kinase (MAPK) family and IκBα in the MAPK and nuclear factor-kappa B (NF-κB) pathways, respectively. These results suggest that 6-MC is a potential therapeutic agent for inflammatory diseases that inhibits inflammation via the MAPK and NF-κB pathways.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chih-Hsuan Hsia ◽  
Thanasekaran Jayakumar ◽  
Wan-Jung Lu ◽  
Joen-Rong Sheu ◽  
Chih-Wei Hsia ◽  
...  

Objective. Oxidative stress-mediated inflammatory events involve in the progress of several diseases such as asthma, cancers, and multiple sclerosis. Auraptene (AU), a natural prenyloxycoumarin, possesses numerous pharmacological activities. Here, the anti-inflammatory effects of AU were investigated in lipoteichoic acid- (LTA-) induced macrophage cells (RAW 264.7). Methods. The expression of cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS) and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, c-Jun N-terminal kinase (JNK), heme oxygenase (HO-1), p65, and IκBα were all identified by western blotting assay. The level of nitric oxide (NO) was measured by spectrometer analysis. The nuclear translocation of p65 nuclear factor kappa B (NF-κB) was assessed by the confocal microscopic staining method. Native polyacrylamide gel electrophoresis was performed to perceive the activity of antioxidant enzyme catalase (CAT). Results. AU expressively reduced NO production and COX-2, TNF-α, IL-1 β, and iNOS expression in LTA-stimulated cells. AU at higher concentration (10 µM) inhibited ERK and JNK, but not p38 phosphorylation induced by LTA. Moreover, AU blocked IκB and p65 phosphorylation, and p65 nuclear translocation. However, AU pretreatment was not effective on antioxidant HO-1 expression, CAT activity, and reduced glutathione (GSH, a nonenzymatic antioxidant), in LTA-induced RAW 264.7 cells. Conclusion. The findings of this study advocate that AU shows anti-inflammatory effects via reducing NF-κB/MAPKs signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document