scholarly journals Method to Convert Stem Cells into Cancer Stem Cells

2019 ◽  
Vol 2 (3) ◽  
pp. 71 ◽  
Author(s):  
Afify ◽  
Chen ◽  
Yan ◽  
Calle ◽  
Nair ◽  
...  

The cancer stem cell (CSC) hypothesis suggests that tumors are sustained exclusively by a small population of the cells with stem cell properties. CSCs have been identified in most tumors and are responsible for the initiation, recurrence, and resistance of different cancers. In vitro CSC models will be of great help in revisiting the mechanism of cancer development, as well as the tumor microenvironment and the heterogeneity of cancer and metastasis. Our group recently described the generation of CSCs from induced pluripotent stem cells (iPSCs), which were reprogrammed from normal cells, and/or embryonic stem cells (ESCs). This procedure will improve the understanding of the essential niche involved in cancer initiation. The composition of this cancer-inducing niche, if identified, will let us know how normal cells convert to malignant in the body and how, in turn, cancer prevention could be achieved. Further, once developed, CSCs demonstrate the ability to differentiate into endothelial cells, cancer-associated fibroblasts, and other phenotypes establishing the CSC niche. These will be good materials for developing novel cancer treatments. In this protocol, we describe how to handle mouse iPSCs/ESCs and how to choose the critical time for starting the conversion into CSCs. This CSC generation protocol is essential for understanding the role of CSC in cancer initiation and progress.

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Erin A. Kimbrel ◽  
Shi-Jiang Lu

The ability of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) to divide indefinitely without losing pluripotency and to theoretically differentiate into any cell type in the body makes them highly attractive cell sources for large scale regenerative medicine purposes. The current use of adult stem cell-derived products in hematologic intervention sets an important precedent and provides a guide for developing hESC/iPSC based therapies for the blood system. In this review, we highlight biological functions of mature cells of the blood, clinical conditions requiring the transfusion or stimulation of these cells, and the potential for hESC/iPSC-derivatives to serve as functional replacements. Many researchers have already been able to differentiate hESCs and/or iPSCs into specific mature blood cell types. For example, hESC-derived red blood cells and platelets are functional in tasks such as oxygen delivery and blood clotting, respectively and may be able to serve as substitutes for their donor-derived counterparts in emergencies. hESC-derived dendritic cells are functional in antigen-presentation and may be used as off-the-shelf vaccine therapies to stimulate antigen-specific immune responses against cancer cells. However,in vitrodifferentiation systems used to generate these cells will need further optimization before hESC/iPSC-derived blood components can be used clinically.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 557 ◽  
Author(s):  
Dinesh Bharti ◽  
Si-Jung Jang ◽  
Sang-Yun Lee ◽  
Sung-Lim Lee ◽  
Gyu-Jin Rho

In the last few decades, stem cell therapy has grown as a boon for many pathological complications including female reproductive disorders. In this review, a brief description of available strategies that are related to stem cell-based in vitro oocyte-like cell (OLC) development are given. We have tried to cover all the aspects and latest updates of the in vitro OLC developmental methodologies, marker profiling, available disease models, and in vivo efficacies, with a special focus on mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) usage. The differentiation abilities of both the ovarian and non-ovarian stem cell sources under various induction conditions have shown different effects on morphological alterations, proliferation- and size-associated developments, hormonal secretions under gonadotropic stimulations, and their neo-oogenesis or folliculogenesis abilities after in vivo transplantations. The attainment of characters like oocyte-like morphology, size expansion, and meiosis initiation have been found to be major obstacles during in vitro oogenesis. A number of reports have either lacked in vivo studies or have shown their functional incapability to produce viable and healthy offspring. Though researchers have gained many valuable insights regarding in vitro gametogenesis, still there are many things to do to make stem cell-derived OLCs fully functional.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Katharina Seiler ◽  
Motokazu Tsuneto ◽  
Fritz Melchers

We review here our experiences with thein vitroreprogramming of somatic cells to induced pluripotent stem cells (iPSC) and subsequentin vitrodevelopment of hematopoietic cells from these iPSC and from embryonic stem cells (ESC). While, in principle, thein vitroreprogramming and subsequent differentiation can generate hematopoietic cell from any somatic cells, it is evident that many of the steps in this process need to be significantly improved before it can be applied to human cells and used in clinical settings of hematopoietic stem cell (HSC) transplantations.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Bertrand Pain

AbstractOrganoids are three-dimensional structures that are derived from the self-organization of stem cells as they differentiate in vitro. The plasticity of stem cells is one of the major criteria for generating organoids most similar to the tissue structures they intend to mimic. Stem cells are cells with unique properties of self-renewal and differentiation. Depending on their origin, a distinction is made between pluripotent (embryonic) stem cells (PSCs), adult (or tissue) stem cells (ASCs), and those obtained by somatic reprogramming, so-called induced pluripotent stem cells (iPSCs). While most data since the 1980s have been acquired in the mouse model, and then from the late 1990s in humans, the process of somatic reprogammation has revolutionized the field of stem cell research. For domestic animals, numerous attempts have been made to obtain PSCs and iPSCs, an approach that makes it possible to omit the use of embryos to derive the cells. Even if the plasticity of the cells obtained is not always optimal, the recent progress in obtaining reprogrammed cells is encouraging. Along with PSCs and iPSCs, many organoid derivations in animal species are currently obtained from ASCs. In this study, we present state-of-the-art stem cell research according to their origins in the various animal models developed.


2021 ◽  
Vol 9 (2) ◽  
pp. 73-85
Author(s):  
Alicja Szubarga ◽  
Marta Kamińska ◽  
Wiktoria Kotlarz ◽  
Stefan Malewski ◽  
Wiktoria Zawada ◽  
...  

Abstract Stem cells are an important subject of research, and are increasingly used in the treatment of various diseases. Due to the development of advanced in vitro techniques, they have become an integral part of modern medicine. The sources of human stem cells are primarily bone marrow and adipose tissue, although non – embryonic stem cells are also scattered throughout the body. Notably, recent research has focused on stem cells found in the oral cavity, both in the dental pulp and oral mucosa. Furthermore, isolation of stem cells from umbilical cord blood is also becoming increasingly popular, while wharton’s jelly and amniotic fluid also seem to be an interesting source of stem cells. The safety and efficacy of stem cells use can be established by animal studies, which are a key element of preclinical research. Mouse, rat and pig models allow for testing of stem cell therapies. Recent studies primarily use mesenchymal stem cells such as mouse – adipose derived mesenchymal stem cells and mouse and rat hematopoietic stem cells. Great hope for future therapies is the use of bioengineering to program cells into induced stem cells, which have the biggest ability for differentiation and transdifferentiation, which carries no risk of teratogenesis. Stem cells are used in many areas of medicine, especially in regenerative medicine, with a growing interest in orthopedics and in the treatment of heart failure. Mesenchymal stem cells are the most used stem cell type, which despite their limited ability to differentiate, give great therapeutic results, mainly due to their immunomodulating effect. Recent studies have even shown that the use of mesenchymal stem cells may be useful in the treatment of COVID-19. Moreover, Research on the use of mesenchymal stem cells in the treatment of Crohn’s disease, acute-graft-versus-host disease and type I diabetes are also promising. The aim of the current review is to present and systematize current knowledge about stem cells, their use and related in vitro research. Running title: Research and use of human stem cells


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Sabine Klawitter ◽  
Nina V. Fuchs ◽  
Kyle R. Upton ◽  
Martin Muñoz-Lopez ◽  
Ruchi Shukla ◽  
...  

Abstract Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs.


Development ◽  
2020 ◽  
Vol 147 (16) ◽  
pp. dev189688 ◽  
Author(s):  
Marion Genet ◽  
Maria-Elena Torres-Padilla

ABSTRACTCurrently, two main cell culture models predominate pluripotent stem cell research: embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Thanks to their ability to contribute to and form all tissues within the body, ESCs and iPSCs have proven invaluable in understanding pluripotent states, early embryonic development and cell differentiation, as well as in devising strategies for regenerative medicine. Comparatively little is known about totipotency – a cellular state with greater developmental potential. In mice, only the zygote and the blastomeres of the 2-cell-stage embryo are truly totipotent, as they alone can develop to form the embryo and all of its supportive extra-embryonic tissues. However, the discovery of a rare subpopulation of cells in murine ESC cultures, possessing features of 2-cell embryo blastomeres and expanded cell fate potential, has provided a biochemically tractable model to enable the in vitro study of totipotency. Here, we summarize current known features of these 2-cell-like cells (2CLCs) in an effort to provide a reference for the community, and to clarify what we know about their identity so far.


2020 ◽  
Vol 15 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Gaifang Wang ◽  
Maryam Farzaneh

Primary Ovarian Insufficiency (POI) is one of the main diseases causing female infertility that occurs in about 1% of women between 30-40 years of age. There are few effective methods for the treatment of women with POI. In the past few years, stem cell-based therapy as one of the most highly investigated new therapies has emerged as a promising strategy for the treatment of POI. Human pluripotent stem cells (hPSCs) can self-renew indefinitely and differentiate into any type of cell. Human Embryonic Stem Cells (hESCs) as a type of pluripotent stem cells are the most powerful candidate for the treatment of POI. Human-induced Pluripotent Stem Cells (hiPSCs) are derived from adult somatic cells by the treatment with exogenous defined factors to create an embryonic-like pluripotent state. Both hiPSCs and hESCs can proliferate and give rise to ectodermal, mesodermal, endodermal, and germ cell lineages. After ovarian stimulation, the number of available oocytes is limited and the yield of total oocytes with high quality is low. Therefore, a robust and reproducible in-vitro culture system that supports the differentiation of human oocytes from PSCs is necessary. Very few studies have focused on the derivation of oocyte-like cells from hiPSCs and the details of hPSCs differentiation into oocytes have not been fully investigated. Therefore, in this review, we focus on the differentiation potential of hPSCs into human oocyte-like cells.


2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document