scholarly journals Deep Learning and Medical Diagnosis: A Review of Literature

2018 ◽  
Vol 2 (3) ◽  
pp. 47 ◽  
Author(s):  
Mihalj Bakator ◽  
Dragica Radosav

In this review the application of deep learning for medical diagnosis is addressed. A thorough analysis of various scientific articles in the domain of deep neural networks application in the medical field has been conducted. More than 300 research articles were obtained, and after several selection steps, 46 articles were presented in more detail. The results indicate that convolutional neural networks (CNN) are the most widely represented when it comes to deep learning and medical image analysis. Furthermore, based on the findings of this article, it can be noted that the application of deep learning technology is widespread, but the majority of applications are focused on bioinformatics, medical diagnosis and other similar fields.

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1579
Author(s):  
Dongqi Wang ◽  
Qinghua Meng ◽  
Dongming Chen ◽  
Hupo Zhang ◽  
Lisheng Xu

Automatic detection of arrhythmia is of great significance for early prevention and diagnosis of cardiovascular disease. Traditional feature engineering methods based on expert knowledge lack multidimensional and multi-view information abstraction and data representation ability, so the traditional research on pattern recognition of arrhythmia detection cannot achieve satisfactory results. Recently, with the increase of deep learning technology, automatic feature extraction of ECG data based on deep neural networks has been widely discussed. In order to utilize the complementary strength between different schemes, in this paper, we propose an arrhythmia detection method based on the multi-resolution representation (MRR) of ECG signals. This method utilizes four different up to date deep neural networks as four channel models for ECG vector representations learning. The deep learning based representations, together with hand-crafted features of ECG, forms the MRR, which is the input of the downstream classification strategy. The experimental results of big ECG dataset multi-label classification confirm that the F1 score of the proposed method is 0.9238, which is 1.31%, 0.62%, 1.18% and 0.6% higher than that of each channel model. From the perspective of architecture, this proposed method is highly scalable and can be employed as an example for arrhythmia recognition.


2020 ◽  
Author(s):  
Albahli Saleh ◽  
Ali Alkhalifah

BACKGROUND To diagnose cardiothoracic diseases, a chest x-ray (CXR) is examined by a radiologist. As more people get affected, doctors are becoming scarce especially in developing countries. However, with the advent of image processing tools, the task of diagnosing these cardiothoracic diseases has seen great progress. A lot of researchers have put in work to see how the problems associated with medical images can be mitigated by using neural networks. OBJECTIVE Previous works used state-of-the-art techniques and got effective results with one or two cardiothoracic diseases but could lead to misclassification. In our work, we adopted GANs to synthesize the chest radiograph (CXR) to augment the training set on multiple cardiothoracic diseases to efficiently diagnose the chest diseases in different classes as shown in Figure 1. In this regard, our major contributions are classifying various cardiothoracic diseases to detect a specific chest disease based on CXR, use the advantage of GANs to overcome the shortages of small training datasets, address the problem of imbalanced data; and implementing optimal deep neural network architecture with different hyper-parameters to improve the model with the best accuracy. METHODS For this research, we are not building a model from scratch due to computational restraints as they require very high-end computers. Rather, we use a Convolutional Neural Network (CNN) as a class of deep neural networks to propose a generative adversarial network (GAN) -based model to generate synthetic data for training the data as the amount of the data is limited. We will use pre-trained models which are models that were trained on a large benchmark dataset to solve a problem similar to the one we want to solve. For example, the ResNet-152 model we used was initially trained on the ImageNet dataset. RESULTS After successful training and validation of the models we developed, ResNet-152 with image augmentation proved to be the best model for the automatic detection of cardiothoracic disease. However, one of the main problems associated with radiographic deep learning projects and research is the scarcity and unavailability of enough datasets which is a key component of all deep learning models as they require a lot of data for training. This is the reason why some of our models had image augmentation to increase the number of images without duplication. As more data are collected in the field of chest radiology, the models could be retrained to improve the accuracies of the models as deep learning models improve with more data. CONCLUSIONS This research employs the advantages of computer vision and medical image analysis to develop an automated model that has the clinical potential for early detection of the disease. Using deep learning models, the research aims to evaluate the effectiveness and accuracy of different convolutional neural network models in the automatic diagnosis of cardiothoracic diseases from x-ray images compared to diagnosis by experts in the medical community.


2021 ◽  
Author(s):  
◽  
Mahdieh Shabanian ◽  

Purpose and Rationale. Central nervous system manifestations form a significant burden of disease in young children. There have been efforts to correlate the neurological disease state in tuberous sclerosis complex (TSC) neurological disease state with imaging findings is a standard part of patient care. However, such analysis of neuroimaging is time- and labor-intensive. Automated approaches to these tasks are needed to improve speed, accuracy, and availability. Automated medical image analysis tools based on 3D/2D deep learning algorithms can help improve the quality and consistency of image diagnosis and interpretation for cognitive disorders in infants. We propose to automate neuroimaging analysis with artificial intelligence algorithms. This novel approach can be used to improve the accuracy of TSC diagnosis and treatment. Deep learning (DL) is among the most successful types of machine learning and utilizes deep artificial neural networks (ANNs), which can determine efficient feature representations of input data. DL algorithms have created new opportunities in medical image analysis. Applications of DL, specifically convolutional neural networks (CNNs), in medical image analysis, cover a broad spectrum of tasks, including risk prediction/estimation with a machine learning system trained on these classification tasks. Study population. We reviewed an NIMH Data Archive (NDA) dataset that was collected in 2010. We also reviewed imaging data from patients and normal cases from birth to 8 years of age acquired at Le Bonheur Children’s Hospital from 2014 to 2020. The University of Tennessee Health Science Center Institutional Review Board (IRB) approved this study. Research Design and Study Procedures. Following Institutional Review Board (IRB) approval, this thesis: 1) Presents the first 2D/3D fusion CNN models to estimate the age of infants from birth to 3 years of age. 2) Presents the first work to look at whole-brain network to automatically distinguish TSC brain structural pathology from normal cases using a 3DCNN model. Conclusions. The study findings indicate that deep neural networks tackle the problem of early prediction of cognitive and neurodevelopmental disorders and structural brain pathology based on MRI automatically in TSC children. It is the hope of the author that analysis of MRI images via methods of deep learning will have a positive impact on healthcare for infants and children at risk of rare diseases.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2132
Author(s):  
Kyriakos D. Apostolidis ◽  
George A. Papakostas

In the past years, deep neural networks (DNN) have become popular in many disciplines such as computer vision (CV), natural language processing (NLP), etc. The evolution of hardware has helped researchers to develop many powerful Deep Learning (DL) models to face numerous challenging problems. One of the most important challenges in the CV area is Medical Image Analysis in which DL models process medical images—such as magnetic resonance imaging (MRI), X-ray, computed tomography (CT), etc.—using convolutional neural networks (CNN) for diagnosis or detection of several diseases. The proper function of these models can significantly upgrade the health systems. However, recent studies have shown that CNN models are vulnerable under adversarial attacks with imperceptible perturbations. In this paper, we summarize existing methods for adversarial attacks, detections and defenses on medical imaging. Finally, we show that many attacks, which are undetectable by the human eye, can degrade the performance of the models, significantly. Nevertheless, some effective defense and attack detection methods keep the models safe to an extent. We end with a discussion on the current state-of-the-art and future challenges.


2021 ◽  
Vol 6 (5) ◽  
pp. 156-167
Author(s):  
Chetanpal Singh

Deep learning has played a potential role in quality healthcare with fast automated and proper medical image analysis. In clinical applications, medical imaging is one of the most important parameters as with the help of this; experts can detect, monitor, and diagnose any kind of problems that are there in the patient's body. However, there are two things that one needs to understand; that is, the implementation of Artificial Neural Networks and Convolutional Neural Networks as well as deep learning to know about medical image analysis. It is necessary to state here that the deep learning approach is gaining attention in the medical imaging field in evaluating the presence or absence of disease in a patient. Mammography images, digital histopathology images, computerized tomography, etc. are some of the areas on which DL implementation focuses. One upon going through the paper will get to know the recent development that has occurred in this field and come up with a critical review on this aspect. The paper has demonstrated in detail modern deep learning models that are implemented in medical image analysis. There is no doubt about the promising future of the deep learning models and according to experts; the implementation of deep learning techniques has outperformed medical experts in numerous tasks. However, deep learning also has some drawbacks and challenges that are required to be addressed like limited datasets and many more. To mitigate such kinds of challenges, researchers are working on this aspect so that they can enhance healthcare by deploying AI.


2022 ◽  
Vol 140 ◽  
pp. 105111
Author(s):  
Zohaib Salahuddin ◽  
Henry C. Woodruff ◽  
Avishek Chatterjee ◽  
Philippe Lambin

Author(s):  
Georgy V. Ayzel ◽  
◽  

For around a decade, deep learning – the sub-field of machine learning that refers to artificial neural networks comprised of many computational layers – modifies the landscape of statistical model development in many research areas, such as image classification, machine translation, and speech recognition. Geoscientific disciplines in general and the field of hydrology in particular, also do not stand aside from this movement. Recently, the proliferation of modern deep learning-based techniques and methods has been actively gaining popularity for solving a wide range of hydrological problems: modeling and forecasting of river runoff, hydrological model parameters regionalization, assessment of available water resources, identification of the main drivers of the recent change in water balance components. This growing popularity of deep neural networks is primarily due to their high universality and efficiency. The presented qualities, together with the rapidly growing amount of accumulated environmental information, as well as increasing availability of computing facilities and resources, allow us to speak about deep neural networks as a new generation of mathematical models designed to, if not to replace existing solutions, but significantly enrich the field of geophysical processes modeling. This paper provides a brief overview of the current state of the field of development and application of deep neural networks in hydrology. Also in the following study, the qualitative long-term forecast regarding the development of deep learning technology for managing the corresponding hydrological modeling challenges is provided based on the use of “Gartner Hype Curve”, which in the general details describes a life cycle of modern technologies.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hyun Kwon ◽  
Jang-Woon Baek

Deep learning technology has been used to develop improved license plate recognition (LPR) systems. In particular, deep neural networks have brought significant improvements in the LPR system. However, deep neural networks are vulnerable to adversarial examples. In the existing LPR system, adversarial examples study specific spots that are easily identifiable by humans or require human feedback. In this paper, we propose a method of generating adversarial examples in the license plate, which has no human feedback and is difficult to identify by humans. In the proposed method, adversarial noise is added only to the license plate among the entire image to create an adversarial example that is erroneously recognized by the LPR system without being identified by humans. Experiments were performed using the baza silka dataset, and TensorFlow was used as the machine learning library. When epsilon is 0.6 for the first type, and alpha and the iteration of the second type are 0.4 and 1000, respectively, the adversarial examples generated by the first and second type generation methods are reduced to 20% and 15% accuracy in the LPR system.


Sign in / Sign up

Export Citation Format

Share Document