scholarly journals Surface-Dependent Osteoblasts Response to TiO2 Nanotubes of Different Crystallinity

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 320 ◽  
Author(s):  
Yuliya Y. Khrunyk ◽  
Sergey V. Belikov ◽  
Mikhail V. Tsurkan ◽  
Ivan V. Vyalykh ◽  
Alexandr Y. Markaryan ◽  
...  

One of the major challenges of implantology is to design nanoscale modifications of titanium implant surfaces inducing osseointegration. The aim of this study was to investigate the behavior of rat osteoblasts cultured on anodized TiO2 nanotubes of different crystallinity (amorphous and anatase phase) up to 24 days. TiO2 nanotubes were fabricated on VT1–0 titanium foil via a two-step anodization at 20 V using NH4F as an electrolyte. Anatase-phase samples were prepared by heat treatment at 500 °C for 1 h. VT1–0 samples with flat surfaces were used as controls. Primary rat osteoblasts were seeded over experimental surfaces for several incubation times. Scanning electron microscopy (SEM) was used to analyze tested surfaces and cell morphology. Cell adhesion and proliferation were investigated by cell counting. Osteogenic differentiation of cells was evaluated by qPCR of runt-related transcription factor 2 (RUNX2), osteopontin (OPN), integrin binding sialoprotein (IBSP), alkaline phosphatase (ALP) and osteocalcin (OCN). Cell adhesion and proliferation, cell morphology and the expression of osteogenic markers were affected by TiO2 nanotube layered substrates of amorphous and anatase crystallinity. In comparison with flat titanium, along with increased cell adhesion and cell growth a large portion of osteoblasts grown on the both nanostructured surfaces exhibited an osteocyte-like morphology as early as 48 h of culture. Moreover, the expression of all tested osteogenic markers in cells cultured on amorphous and anatase TiO2 nanotubes was upregulated at least at one of the analyzed time points. To summarize, we demonstrated that amorphous and anodized TiO2 layered substrates are highly biocompatible with rat osteoblasts and that the surface modification with about 1500 nm length nanotubes of 35 ± 4 (amorphous phase) and 41 ± 8 nm (anatase phase) in diameter is sufficient to induce their osteogenic differentiation. Such results are significant to the engineering of coating strategies for orthopedic implants aimed to establish a more efficient bone to implant contact and enhance bone repair.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanbo Zhang ◽  
Ruiyan Li ◽  
Wenzheng Wu ◽  
Yun’an Qing ◽  
Xiongfeng Tang ◽  
...  

The purpose of this work was to investigate the porous polyetherimide scaffold (P-PEIs) as an alternative biopolymer for bone tissue engineering. The P-PEIs was fabricated via solvent casting and particulate leaching technique. The morphology, phase composition, roughness, hydrophilicity, and biocompatibility of P-PEIs were evaluated and compared with polyetherimide (PEI) and Ti6Al4V disks. P-PEIs showed a biomimetic porous structure with a modulus of 78.95 ± 2.30 MPa. The water contact angle of P-PEIs was 75.4 ± 3.39°, which suggested that P-PEIs had a wettability surface. Moreover, P-PEIs provides a feasible environment for cell adhesion and proliferation. The relative cell adhesion capability and the cell morphology on P-PEIs were better than PEI and Ti6Al4V samples. Furthermore, the MC3T3-E1 cells on P-PEIs showed faster proliferation rate than other groups. It was revealed that the P-PEIs could be a potential material for the application of bone regeneration.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yingying Zhang ◽  
Yanghui Xing ◽  
Jian Li ◽  
Zhiqiang Zhang ◽  
Huiqin Luan ◽  
...  

Osteogenic differentiation of cells has considerable clinical significance in bone defect treatment, and cell behavior is linked to extracellular matrix stiffness. This study aimed to determine how matrix stiffness affects cell morphology and subsequently regulates the osteogenic phenotype of osteogenesis precursor cells. Four PDMS substrates were prepared with stiffness corresponding to the elastic modulus ranging from 0.6 MPa to 2.7 MPa by altering the Sylgard 527 and Sylgard 184 concentrations. MC3T3-E1 cells were cultured on the matrices. Cell morphology, vinculin expression, and key osteogenic markers, Col I, OCN, OPN, and calcium nodule, were examined. The activity and expression level of Yes-associated protein (YAP) were evaluated. Results showed that cell spreading exhibited no correlation with the stiffness of matrix designed in this paper, but substratum stiffness did modulate MC3T3-E1 osteogenic differentiation. Col I, OPN, and OCN proteins were significantly increased in cells cultured on soft matrices compared with stiff matrices. Additionally, cells cultured on the 1:3 ratio matrices had more nodules than those on other matrices. Accordingly, cells on substrates with low stiffness showed enhanced expression of the osteogenic markers. Meanwhile, YAP expression was downregulated on soft substrates although the subcellular location was not affected. Our results provide evidence that matrix stiffness (elastic modulus ranging from 0.6 MPa to 2.7 MPa) affects the osteogenic differentiation of MC3T3-E1, but it is not that “the stiffer, the better” as showed in some of the previous studies. The optimal substrate stiffness may exist to promote osteoblast differentiation. Cell differentiation triggered by the changes in substrate stiffness may be independent of the YAP signal. This study has important implications for biomaterial design and stem cell-based tissue engineering.


2007 ◽  
Vol 330-332 ◽  
pp. 385-388 ◽  
Author(s):  
Zhi Jun Pan ◽  
Bing Gang Guan ◽  
Di Sheng Yang ◽  
Jie Feng ◽  
Wei Qi Yan

Biomimetic nanoapatite coatings was developed by functionally modified methods with a combination of topographic, chemical and biomimetic treatments on the surface of titanium (Ti) substrate. The biological behavior and bioactivity of functionally modified SLA implants with chemical and biomimetic treatments (SCB-treated Ti) using body like solution were investigated to compare with untreated Ti and SLA Ti plates as controls. The cell attachment, proliferation, alkaline phosphotatse (AKP) activity, cell morphology and differentiation were evaluated by using MTT, RT-PCR, scanning electron microscopy (SEM) and confocal laser-scanning microscope (CLSM) analysis system. The results showed that the cell adhesion and proliferation was enhanced on functionalized titanium surface with nano-scale apatite compared to the controls. SEM micrographs also revealed that the osteoblast-like cells spreadly grew along the surface. Cell morphology and differentiation could be further observed distinctly by CLSM graphs. Moreover, mRNA expression of alkaline phosphotatse in nucleus on the SCB-treated Ti increased obviously on the third day compared with the controls. The in vitro results demonstrated the remarkable improvement on cell adhesion and proliferation of the biomimetic nanoapatite on SCB-treated Ti, which could be used for orthopaedic/dental implants.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012041
Author(s):  
S S Lim ◽  
H M Zu ◽  
H S Loh

Abstract Scaffolds have been used as alternative biomaterials to overcome physiological bone disorders. Production of scaffolds has been challenging to fulfil the following criteria: biodegradability, mechanical sustainability, and biocompatibility. For cellular interaction, protein adsorbed on scaffold surface is important for osteoblastic activities. This study aimed to functionalize chitosan-TiO2 nanotubes scaffolds with fetal bovine serum and investigate in vitro efficacy of such scaffolds with fetal bovine serum. Chitosan-TiO2 nanotubes scaffolds were prepared via direct blending and lyophilization. They were then functionalized with fetal bovine serum via adsorption for 4, 8, 12 and 24 h. The in vitro efficacy of the functionalized scaffolds was evaluated using MG63 cells. The adsorption of fetal bovine serum onto the scaffolds was complex where saturation of adsorption was hardly attained. The in vitro efficacy of scaffolds with adsorbed fetal bovine serum was higher than that of those without fetal bovine serum by promoting better osteoblastic functions. Notably, the scaffolds functionalized for 4 h enhanced cell adhesion and proliferation on 7 day suggesting good regulation of osteoblastic binding and proliferation. ALP protein was expressed on 26 day in all functionalized scaffolds. Chitosan-TiO2 nanotubes scaffolds with adsorbed fetal bovine serum can be a potential regenerative material for bone regeneration.


2019 ◽  
Author(s):  
Chengcheng Yin ◽  
Xiaoshi Jia ◽  
Qin Zhao ◽  
Zifan Zhao ◽  
Jinyang Wang ◽  
...  

2021 ◽  
Vol 49 (1) ◽  
pp. 398-406
Author(s):  
Yanchang Liu ◽  
Zhicheng Tong ◽  
Chen Wang ◽  
Runzhi Xia ◽  
Huiwu Li ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ping Zhou ◽  
Jia-Min Shi ◽  
Jing-E Song ◽  
Yu Han ◽  
Hong-Jiao Li ◽  
...  

Abstract Background Derivation of osteoblast-like cells from human pluripotent stem cells (hPSCs) is a popular topic in bone tissue engineering. Although many improvements have been achieved, the low induction efficiency because of spontaneous differentiation hampers their applications. To solve this problem, a detailed understanding of the osteogenic differentiation process of hPSCs is urgently needed. Methods Monolayer cultured human embryonic stem cells and human-induced pluripotent stem cells were differentiated in commonly applied serum-containing osteogenic medium for 35 days. In addition to traditional assays such as cell viability detection, reverse transcription-polymerase chain reaction, immunofluorescence, and alizarin red staining, we also applied studies of cell counting, cell telomerase activity, and flow cytometry as essential indicators to analyse the cell type changes in each week. Results The population of differentiated cells was quite heterogeneous throughout the 35 days of induction. Then, cell telomerase activity and cell cycle analyses have value in evaluating the cell type and tumourigenicity of the obtained cells. Finally, a dynamic map was made to integrate the analysis of these results during osteogenic differentiation of hPSCs, and the cell types at defined stages were concluded. Conclusions Our results lay the foundation to improve the in vitro osteogenic differentiation efficiency of hPSCs by supplementing with functional compounds at the desired stage, and then establishing a stepwise induction system in the future.


Author(s):  
Mi Wu ◽  
Zhengyi Han ◽  
Wen Liu ◽  
Jinrong Yao ◽  
Bingjiao Zhao ◽  
...  

LAPONITE® (LAP) nanoplatelets were incorporated within a regenerated silk fibroin (RSF) microfibrous mat via electrospinning, which exhibited better cell adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) than the pristine RSF ones.


Sign in / Sign up

Export Citation Format

Share Document