scholarly journals Improving Electrochemical Properties of Polypyrrole Coatings by Graphene Oxide and Carbon Nanotubes

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 507 ◽  
Author(s):  
Nelly Maria Rosas-Laverde ◽  
Alina Pruna ◽  
David Busquets-Mataix

Nanostructured polypyrrole coating was applied on carbon paper via simple dip-coating and electrochemical approach. Hybridization with nanocarbon materials (graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs)) and their effect as an anchoring hybrid layer for the growth of polypyrrole towards improving electrochemical properties are studied. The loading of each component and their w/w ratio were evaluated. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and Raman spectroscopy were employed to characterize the properties of the coatings. The electrochemical properties were investigated by cyclic voltammetry. The results indicated the electrodeposition of polypyrrole is enhanced by the addition of MWCNTs to the GO layer due to the formation of a hierarchical network. The electrochemical performance of the modified electrode was shown to be highly dependent on the employed w/w ratio, reaching a capacitance value of about 40 mF cm−2 for a carbon paper substrate modified with GO:MWCNT in a w/w ratio of 1:2.5 and PPy layer deposited by cyclic voltammetry for 30 cycles. The contribution to total stored charge was found to be primary from the inner capacitance component of about 95.5% contribution.

2016 ◽  
Vol 18 (4) ◽  
pp. 22-26 ◽  
Author(s):  
Sandra Zdanowska ◽  
Magdalena Pyzalska ◽  
Józef Drabowicz ◽  
Damian Kulawik ◽  
Volodymyr Pavlyuk ◽  
...  

Abstract This paper concentrates on electrochemical properties of groups of multi-walled carbon nanotubes (MWCNT) functionalized with substituents containing a stereogenic heteroatom bonded covalently to the surface of the carbon nanotube. This system was tested in Swagelok-type cells. The cells comprised a system (functionalized CNT with salts containing S and P atoms) with a working electrode, microfiber separators soaked with electrolyte solution, and a lithium foil counter/reference (commercial LiCoO2) electrode. The electrolyte solution was 1 M LiPF6 in propylene carbonate. Using standard techniques (cyclic voltammetry/chronopotentiometry), galvanostatic cycling was performed on the cells at room temperature with a CH Instruments Model 600E potentiostat/galvanostat electrochemical measurements. Methods of functionalization CNT were compared in terms of the electrochemical properties of the studied systems. In all systems, the process of charge/discharge was observed.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 624 ◽  
Author(s):  
Alina Iuliana Pruna ◽  
Nelly Ma. Rosas-Laverde ◽  
David Busquets Mataix

Graphene oxide (GO)-modified polypyrrole (PPy) coatings were obtained by electrochemical methods in the presence of the anionic surfactant, sodium dodecyl sulfate (SDS). The structure, morphology, and electrochemical properties of the coatings were assessed by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM) and cyclic voltammetry at varying scan rates, respectively. The properties of the obtained coatings were analyzed with the GO and PPy loadings and electrodeposition mode. The hybrid coatings obtained galvanostatically showed a coarser appearance than those deposited by cyclic voltammetry CV mode and improved performance, respectively, which was further enhanced by GO and PPy loading. The capacitance enhancement can be attributed to the SDS surfactant that well dispersed the GO sheets, thus allowing the use of lower GO content for improved contribution, while the choice of suitable electrodeposition parameters is highly important for improving the applicability of GO-modified PPy coatings in energy storage applications.


2013 ◽  
Vol 13 (12) ◽  
pp. 4749-4756 ◽  
Author(s):  
Xiaoyu Li ◽  
Xiangdong Chen ◽  
Yao Yao ◽  
Ning Li ◽  
Xinpeng Chen ◽  
...  

2021 ◽  
Author(s):  
Marzia Soligo ◽  
Fausto Maria Felsani ◽  
Tatiana Da Ros ◽  
Susanna Bosi ◽  
Elena Pellizzoni ◽  
...  

Carbon nanotubes (CNTs) are currently under active investigation for their use in several biomedical applications, especially in neurological diseases and nervous system injury due to their electrochemical properties.


2016 ◽  
Vol 52 (5) ◽  
pp. 441-448 ◽  
Author(s):  
E. O. Fedorovskaya ◽  
L. G. Bulusheva ◽  
A. G. Kurenya ◽  
I. P. Asanov ◽  
A. V. Okotrub

2021 ◽  
Vol 21 (7) ◽  
pp. 3711-3715
Author(s):  
Jeongdong Choi ◽  
Eun-Sik Kim

This study investigated experimental parameters to fabricate polymeric carbon nanocomposite hollow-fiber membranes with graphene oxide and multi-walled carbon nanotubes. This case was different from that of flat-sheet type membranes in that the characteristics of the hollow-fiber type membranes were affected by the structure of the spinneret, the flow rate of the injected polymer and draw solution, and the mixing ratio. The membranes were characterized in terms of mechanical strength, porosity, hydrophilicity, and permeate flux using different solutions. The results reveal a mechanical strength of the carbon nanocomposite hollow-fiber membranes that is about 47.8% higher than that of hollow-fiber membranes without carbon nanomaterials. The porosity and surface hydrophilicity changed to produce more applicable membranes for water and wastewater treatment. As for the permeate flux, the nanocomposite membrane with graphene oxide showed a higher flux compared to the multi-walled carbon nanotubes membrane, which could be influenced by structural effects of the carbon materials.


Sign in / Sign up

Export Citation Format

Share Document