scholarly journals 3-Dimensional Porous Carbon with High Nitrogen Content Obtained from Longan Shell and Its Excellent Performance for Aqueous and All-Solid-State Supercapacitors

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 808 ◽  
Author(s):  
Yuhao Liu ◽  
Xiaoxiao Qu ◽  
Guangxu Huang ◽  
Baolin Xing ◽  
Fengmei Zhang ◽  
...  

Three-dimensional porous carbon is considered as an ideal electrode material for supercapacitors (SCs) applications owing to its good conductivity, developed pore structure, and excellent connectivity. Herein, using longan shell as precursor, 3-dimensional porous carbon with abundant and interconnected pores and moderate heteroatoms were obtained via simple carbonization and potassium hydroxide (KOH) activation treatment. The electrochemical performances of obtained 3-dimensional porous carbon were investigated as electrode materials in symmetric SCs with aqueous and solid electrolytes. The optimized material that is named after longan shell 3-dimensional porous carbon 800 (LSPC800) possesses high porosity (1.644 cm3 g−1) and N content (1.14 at %). In the three-electrode measurement, the LSPC800 displays an excellent capacitance value of 359 F g−1. Besides, the LSPC800 also achieves splendid specific capacitance (254 F g−1) in the two electrode system, while the fabricated SC employing 1 M Li2SO4 as electrolyte acquires ultrahigh power density (15930.38 W kg−1). Most importantly, LSPC800 electrodes are further applied into the SC adopting the KOH/polyvinyl alcohol (PVA) gel electrolyte, which reaches up to an outstanding capacitance of 313 F g−1 at 0.5 A g−1. In addition, for the all-solid-state SC, its rate capability at 50 A g−1 is 72.73% and retention at the 10,000th run is 93.64%. Evidently, this work is of great significance to the simple fabrication of 3-dimensional porous carbon and further opens up a way of improving the value-added utilization of biomass materials, as well as proving that the biomass porous carbons have immense potential for high-performance SCs application.

2021 ◽  
Vol 236 ◽  
pp. 01016
Author(s):  
Congcong Huang ◽  
Yunhui Dong ◽  
Xingjun Dong

A facile route has been employed to synthesize a series of high performance activated carbons as the electrode material for supercapacitors. The structure of the carbons are characterized by N2 adsorption/desorption and FTIR spectroscopy. The electrochemical performances of the carbons as an electrode material were evaluated by cyclic voltammetry test and galvanostatic charge/discharge measurements. As a biomass derived carbon, KOH-1 exhibits high capacity, good rate capability and high energy density, indicating the promising application of hydrothermal combining with KOH activation method for biomass materials that used in supercapacitors


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1703
Author(s):  
Xiaomeng Yang ◽  
Xiaorui Zeng ◽  
Guihong Han ◽  
Dong Sui ◽  
Xiangyu Song ◽  
...  

The growing demand for high performance from supercapacitors has inspired the development of porous nanocomposites using renewable and naturally available materials. In this work, a formaldehyde-free phenolic resin using monosaccharide-based furfural was synthesized to act as the carbon precursor. One dimensional halloysite nanotube (HNT) with high porosity and excellent cation/anion exchange capacity was mixed with the phenol-furfural resin to fabricate carbonaceous nanocomposite HNT/C. Their structure and porosity were characterized. The effects of the halloysite nanotube amount and carbonization temperature on the electrochemical properties of HNT/C were explored. HNT/C exhibited rich porosity, involving a large specific surface area 253 m2·g−1 with a total pore volume of 0.27 cm3·g−1. The electrochemical performance of HNT/C was characterized in the three-electrode system and showed enhanced specific capacitance of 146 F·g−1 at 0.2 A g−1 (68 F·g−1 for pristine carbon) in electrolyte (6 mol·L−1 KOH) and a good rate capability of 62% at 3 A g−1. It also displayed excellent cycle performance with capacitance retention of 98.5% after 500 cycles. The symmetric supercapacitors with HNT/C-1:1.5-800 electrodes were fabricated, exhibiting a high energy density of 20.28 Wh·Kg−1 at a power density of 100 W·Kg−1 in 1 M Na2SO4 electrolyte. The present work provides a feasible method for preparing composite electrode materials with a porous structure from renewable phenol-furfural resin and HNT. The excellent supercapacitance highlights the potential applications of HNT/C in energy storage.


2014 ◽  
Vol 2 (46) ◽  
pp. 19678-19684 ◽  
Author(s):  
Ding Nan ◽  
Zheng-Hong Huang ◽  
Ruitao Lv ◽  
Lu Yang ◽  
Jian-Gan Wang ◽  
...  

Nitrogen-enriched electrospun carbon nanofiber networks were prepared to use as a free-standing LIB anode material with ultrahigh capacity and good rate capability.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2477
Author(s):  
Xiaoyu Li ◽  
Mingyang Zhang ◽  
Zhuowei Tan ◽  
Zhiqiang Gong ◽  
Peikun Liu ◽  
...  

Rational design and sustainable preparation of high-performance carbonaceous electrode materials are important to the practical application of supercapacitors. In this work, a cost-effective synthesis strategy for nitrogen and oxygen co-doped porous carbon (NOC) from petroleum sludge waste was developed. The hierarchical porous structure and ultra-high surface area (2514.7 m2 g−1) of NOC electrode materials could provide an efficient transport path and capacitance active site for electrolyte ions. The uniform co-doping of N and O heteroatoms brought enhanced wettability, electrical conductivity and probably additional pseudo-capacitance. The as-obtained NOC electrodes exhibited a high specific capacitance (441.2 F g−1 at 0.5 A g−1), outstanding rate capability, and cycling performance with inconspicuous capacitance loss after 10,000 cycles. Further, the assembled all-solid-state MnO2/NOC asymmetrical supercapacitor device (ASC) could deliver an excellent capacitance of 119.3 F g−1 at 0.2 A g−1 under a wide potential operation window of 0–1.8 V with flexible mechanical stability. This ASC device yielded a superior energy density of 53.7 W h kg−1 at a power density of 180 W kg−1 and a reasonable cycling life. Overall, this sustainable, low-cost and waste-derived porous carbon electrode material might be widely used in the field of energy storage, now and into the foreseeable future.


2014 ◽  
Vol 2 (28) ◽  
pp. 10895-10903 ◽  
Author(s):  
Hong-Fei Ju ◽  
Wei-Li Song ◽  
Li-Zhen Fan

Graphene/porous carbon aerogels were rationally designed by a simple green process, exhibiting excellent electrochemical performance and long-term cycle stability as the electrode materials in flexible all-solid-state supercapacitors.


2020 ◽  
Author(s):  
Deping Li ◽  
Qing Sun ◽  
Yamin Zhang ◽  
Xinyue Dai ◽  
Fengjun Ji ◽  
...  

<p>Carbon-based material has been regarded as one of the most promising electrode materials for Potassium-ion batteries (PIBs). However, the battery performance based on reported porous carbon electrodes is still unsatisfactory, while the in-depth K-ion storage mechanism remains relatively ambiguous. Herein, we propose a facile “<i>in situ</i> template bubbling” method for synthesizing interlayer tuned hierarchically porous carbon with different metallic ions, which delivers superior K-ion storage performance, especially the rate capability (158.6 mAh g<sup>-1</sup>@10.0 A g<sup>-1</sup>) and high-rate cycling stability (82.8% capacity retention after 2000 cycles at 5.0 A g<sup>-1</sup>). The origin of the excellent rate performance is revealed by the deliberately designed consecutive CV measurements, <i>Ex situ</i> Raman tests, GITT and theoretical simulations. Considering the facile preparation strategy, superior electrochemical performance and insightful mechanism investigations, this work can provide fundamental understandings for high performance PIBs and related energy storage devices like sodium-ion batteries, aluminum-ion batteries, electrochemical capacitors and dual-ion batteries.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Isacfranklin ◽  
R. Yuvakkumar ◽  
G. Ravi ◽  
S. I. Hong ◽  
Foo Shini ◽  
...  

Abstract The growth in energy devices and the role of supercapacitors are increasingly important in today’s world. Designing an electrode material for supercapacitors using metals that have high performance, superior structure, are eco-friendly, inexpensive and highly abundant is essentially required for commercialization. In this point of view, quaternary chalcogenide Cu2NiSnS4 with fascinating marigold flower like microstructured electrodes are synthesized using different concentrations of citric acid (0, 0.05 M, 0.1 M and 0.2 M) by employing solvothermal method. The electrode materials physicochemical characteristics are deliberated in detail using the basic characterization techniques. The electrochemical studies revealed better electrochemical performances, in particular, [email protected] M-CA electrode revealed high 1029 F/g specific capacitance at 0.5 A/g current density. Further, it retained 78.65% capacity over 5000 cycles. To prove the practical applicability, a full-cell asymmetric solid-state device is fabricated, and it delivered 41.25 Wh/Kg and 750 Wh/Kg energy and power density at 0.5 A/g. The optimum citric acid added Cu2NiSnS4 electrode is shown to be a promising candidate for supercapacitor applications.


NANO ◽  
2016 ◽  
Vol 11 (02) ◽  
pp. 1650015 ◽  
Author(s):  
Tingting Chen ◽  
Yong Fan ◽  
Guangning Wang ◽  
Jing Zhang ◽  
Huixin Chuo ◽  
...  

The composite supercapacitor electrodes were rationally fabricated by facile electrochemical deposition of polypyrrole (PPy) on NiCo2O4 nanowire arrays which were grown radially on carbon fiber (CF). When used as electrodes in supercapacitors, the composite nanostructures demonstrated prominent electrochemical performances with a high areal capacitance (1.44[Formula: see text]F/cm2 at a current density of 2[Formula: see text]mA/cm2), a good rate capability (80.5% when the current density increases from 2[Formula: see text]mA/cm2 to 20[Formula: see text]mA/cm2), and a good cycling ability (85% of the initial specific capacitance remained after 5000 cycles at a high current density of 10[Formula: see text]mA/cm2). The excellent electrochemical performance of NiCo2O4@PPy nanostructures can be mainly ascribed to the good electrical conductivity of PPy, the enhanced adherent force between electrode materials and CF to hold the electrode fragments together by means of NiCo2O4 nanowires, the short ion diffusion pathway in ordered porous NiCo2O4 nanowires and the three-dimensional nanostructures.


2018 ◽  
Vol 6 (18) ◽  
pp. 8750-8756 ◽  
Author(s):  
Yuxi Liu ◽  
Xiaoming Qiu ◽  
Xiaobin Liu ◽  
Yongchang Liu ◽  
Li-Zhen Fan

3D porous carbon nanosheet/electrochemically exfoliated graphene hybrids with abundant nitrogen- and sulfur-containing functional groups and high specific surface area were prepared and evaluated as electrode materials.


2020 ◽  
Author(s):  
Deping Li ◽  
Qing Sun ◽  
Yamin Zhang ◽  
Xinyue Dai ◽  
Fengjun Ji ◽  
...  

<p>Carbon-based material has been regarded as one of the most promising electrode materials for Potassium-ion batteries (PIBs). However, the battery performance based on reported porous carbon electrodes is still unsatisfactory, while the in-depth K-ion storage mechanism remains relatively ambiguous. Herein, we propose a facile “<i>in situ</i> template bubbling” method for synthesizing interlayer tuned hierarchically porous carbon with different metallic ions, which delivers superior K-ion storage performance, especially the rate capability (158.6 mAh g<sup>-1</sup>@10.0 A g<sup>-1</sup>) and high-rate cycling stability (82.8% capacity retention after 2000 cycles at 5.0 A g<sup>-1</sup>). The origin of the excellent rate performance is revealed by the deliberately designed consecutive CV measurements, <i>Ex situ</i> Raman tests, GITT and theoretical simulations. Considering the facile preparation strategy, superior electrochemical performance and insightful mechanism investigations, this work can provide fundamental understandings for high performance PIBs and related energy storage devices like sodium-ion batteries, aluminum-ion batteries, electrochemical capacitors and dual-ion batteries.</p>


Sign in / Sign up

Export Citation Format

Share Document