scholarly journals Broadband Filter and Adjustable Extinction Ratio Modulator Based on Metal-Graphene Hybrid Metamaterials

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1359 ◽  
Author(s):  
Haoying Sun ◽  
Lin Zhao ◽  
Jinsong Dai ◽  
Yaoyao Liang ◽  
Jianping Guo ◽  
...  

A novel multifunctional device based on a hybrid metal–graphene Electromagnetically induced transparency (EIT) metamaterial at the terahertz band is proposed. It is composed of a parallel cut wire pair (PCWP) that serves as a dark mode resonator, a vertical cut wire pair (VCWP) that serves as a bright mode resonator and a graphene ribbon that serves as a modulator. An ultra-broadband transmission window with 1.23 THz bandwidth can be obtained. The spectral extinction ratio can be tuned from 26% to 98% by changing the Fermi level of the graphene. Compared with previous work, our work has superior performance in the adjustable bandwidth of the transmission window without changing the structure of the dark and bright mode resonators, and has a high extinction ratio and dynamic adjustability. Besides, we present the specific application of the device in filters and optical modules. Therefore, we believe that such a metamaterial structure provides a new way to actively control EIT-like, which has promising applications in broadband optical filters and photoelectric intensity modulators in terahertz communications.

2017 ◽  
Vol 13 (2) ◽  
pp. 95-99 ◽  
Author(s):  
Yan Liu ◽  
Sai Chen ◽  
Fei Fan ◽  
Meng Chen ◽  
Jin-jun Bai ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 171 ◽  
Author(s):  
Chaode Lao ◽  
Yaoyao Liang ◽  
Xianjun Wang ◽  
Haihua Fan ◽  
Faqiang Wang ◽  
...  

In this paper, a novel method to realize a dynamically tunable analogue of EIT for the resonance strength rather than the resonance frequency is proposed in the terahertz spectrum. The introduced method is composed of a metal EIT-like structure, in which a distinct EIT phenomenon resulting from the near field coupling between bright and dark mode resonators can be obtained, as well as an integrated monolayer graphene ribbon under the dark mode resonator that can continuously adjust the resonance strength of transparency peak by changing the Fermi level of the graphene. Comparing structures that need to be modulated individually for each unit cell of the metamaterials, the proposed modulation mechanism was convenient for achieving synchronous operations for all unit cells. This work demonstrates a new platform of modulating the EIT analogue and paves the way to design terahertz functional devices which meet the needs of optical networks and terahertz communications.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Jie Hu ◽  
Tingting Lang ◽  
Weihang Xu ◽  
Jianjun Liu ◽  
Zhi Hong

AbstractWe propose a conductively coupled terahertz metallic metamaterial exhibiting analog of electromagnetically induced transparency (EIT), in which the bright and dark mode antennae interact via surface currents rather than near-field coupling. Aluminum foil, which is very cheap and often used in food package, is used to fabricate our metamaterials. Thus, our metamaterials are also flexible metamaterials. In our design, aluminum bar resonators and aluminum split ring resonators (SRRs) are connected (rather than separated) in the form of a fork-shaped structure. We conduct a numerical simulation and an experiment to analyze the mechanism of the proposed metamaterial. The surface current due to LSP resonance (bright mode) flows along different paths, and a potential difference is generated at the split gaps of the SRRs. Thus, an LC resonance (dark mode) is induced, and the bright mode is suppressed, resulting in EIT. The EIT-like phenomenon exhibited by the metamaterial is induced by surface conducting currents, which may provide new ideas for the design of EIT metamaterials. Moreover, the process of fabricating microstructures on flexible substrates can provide a reference for producing flexible microstructures in the future.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuwen He ◽  
Jianfa Zhang ◽  
Wei Xu ◽  
Chucai Guo ◽  
Ken Liu ◽  
...  

AbstractElectromagnetically induced transparency (EIT) arises from the coherent coupling and interference between a superradiant (bright) mode in one resonator and a subradiant (dark) mode in an adjacent resonator. Generally, the two adjacent resonators are structurally or spatially asymmetric. Here, by numerical simulation, we demonstrate that tunable EIT can be induced by graphene ribbon pairs without structurally or spatially asymmetry. The mechanism originates from the fact that the resonate frequencies of the bright mode and the dark mode supported by the symmetrical graphene ribbon pairs can be respectively tuned by electrical doping levels, and when they are tuned to be equal the graphene plasmon coupling and interference occurs. The EIT in symmetrical nanostructure which avoids deliberately breaking the element symmetry in shape as well as in size facilitates the design and fabrication of the structure. In addition, the work regarding to EIT in the structurally symmetric could provide a fresh contribution to a more comprehensive physical understanding of Fano resonance.


Author(s):  
Renxia Ning ◽  
Zhiqiang Xiao ◽  
Zhenhai Chen ◽  
Wei Huang

AbstractA multilayer structure of a square ring of graphene with nesting vanadium dioxide (VO2) was investigated in this study. This structure exhibits electromagnetically induced transparency (EIT), which stems from a bright mode coupling with a dark mode. The permittivity values of graphene and VO2 can be modulated via chemical potential and temperature, respectively. The EIT effect can be tuned based on the chemical potential of graphene and temperature of VO2, resulting in a dual-tunable EIT effect. Simulation results confirmed that this dual-tunable EIT phenomenon is insensitive to polarization. These results may have potential applications in terahertz devices, such as slow light devices, switching devices, and sensors.


2014 ◽  
Vol 28 (27) ◽  
pp. 1450217
Author(s):  
Zhihui He ◽  
Hongjian Li ◽  
Shiping Zhan ◽  
Guangtao Cao ◽  
Boxun Li

In this paper, we present a metal-dielectric-metal (MDM) waveguide side-coupled with bright-dark-bright mode cavities and double bright-dark mode cavities. The former shows a prominent plasmonic analogue of electromagnetically induced transparency (EIT) spectra response, the latter shows double plasmonic analogue of EIT spectra response. The direct coupling strength between bright and dark mode resonators in the case of the second-order resonant mode is investigated in detail in our researches. The transmission spectrum and the slow light effects as a function of the cavity–cavity separation between resonators are further studied. Our researches investigate the coupling strength effects on the transmission and scattering properties in the case of the high-order resonance mode, which may provide a guideline for the control of light in highly integrated optical circuits.


2020 ◽  
Vol 10 (16) ◽  
pp. 5550
Author(s):  
Guanqi Wang ◽  
Xianbin Zhang ◽  
Xuyan Wei

The combination of graphene and metamaterials is the ideal route to achieve active control of the electromagnetic wave in the terahertz (THz) regime. Here, the tunable plasmon-induced transparency (PIT) metamaterial, integrating metal resonators with tunable graphene, is numerically investigated at THz frequencies. By varying the Fermi energy of graphene, the reconfigurable coupling condition is actively modulated and continuous manipulation of the metamaterial resonance intensity is achieved. In this device structure, monolayer graphene operates as a tunable conductive film which yields actively controlled PIT behavior and the accompanied group delay. This device concept provides theoretical guidance to design compact terahertz modulation devices.


Sign in / Sign up

Export Citation Format

Share Document