scholarly journals Nanomaterials in Dentistry: State of the Art and Future Challenges

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1770
Author(s):  
Victoria Bonilla-Represa ◽  
Camilo Abalos-Labruzzi ◽  
Manuela Herrera-Martinez ◽  
M. Olga Guerrero-Pérez

Nanomaterials are commonly considered as those materials in which the shape and molecular composition at a nanometer scale can be controlled. Subsequently, they present extraordinary properties that are being useful for the development of new and improved applications in many fields, including medicine. In dentistry, several research efforts are being conducted, especially during the last decade, for the improvement of the properties of materials used in dentistry. The objective of the present article is to offer the audience a complete and comprehensive review of the main applications that have been developed in dentistry, by the use of these materials, during the last two decades. It was shown how these materials are improving the treatments in mainly all the important areas of dentistry, such as endodontics, periodontics, implants, tissue engineering and restorative dentistry. The scope of the present review is, subsequently, to revise the main applications regarding nano-shaped materials in dentistry, including nanorods, nanofibers, nanotubes, nanospheres/nanoparticles, and zeolites and other orders porous materials. The results of the bibliographic analysis show that the most explored nanomaterials in dentistry are graphene and carbon nanotubes, and their derivatives. A detailed analysis and a comparative study of their applications show that, although they are quite similar, graphene-based materials seem to be more promising for most of the applications of interest in dentistry. The bibliographic study also demonstrated the potential of zeolite-based materials, although the low number of studies on their applications shows that they have not been totally explored, as well as other porous nanomaterials that have found important applications in medicine, such as metal organic frameworks, have not been explored. Subsequently, it is expected that the research effort will concentrate on graphene and zeolite-based materials in the coming years. Thus, the present review paper presents a detailed bibliographic study, with more than 200 references, in order to briefly describe the main achievements that have been described in dentistry using nanomaterials, compare and analyze them in a critical way, with the aim of predicting the future challenges.

Author(s):  
Victoria Bonilla ◽  
Camilo Abalos ◽  
Manuela Herrera ◽  
M. Olga Guerrero-Pérez

The results of the bibliographic analysis show that the most explored nanomaterials in dentistry are graphene and carbon nanotubes, and their derivatives. A detailed analysis and a comparative study on their applications show that, although they are quite similar, graphene based materials seem to be more promising for most of the applications of interest in dentistry. The bibliographic study also demonstrated the potential of zeolite based materials, although the low number of studies on their applications shows that they have not been totally explored, as well as other porous nanomaterials that found important applications in medicine, such as metal organic frameworks, have not been explored. Subsequently, it is expected that the research effort will concentrate in graphene and zeolite based materials in the incoming years. Thus, present review paper presents a detailed bibliographic study, with more than 200 references, in order to describe briefly the main achievements that have been described in dentistry using nanomaterials, compare and analyze them in a critical way, with the aim of predicting the future challenges.


Author(s):  
Ali Mardani ◽  
Sultan Husein Bayqra ◽  
Süleyman Özen ◽  
Zia Ahmad Faqiri ◽  
Kambiz Ramyar

Author(s):  
D.G. Fomin ◽  
◽  
N.V. Dudarev ◽  
S.N. Darovskikh ◽  
◽  
...  

One of the modern trends in the development of communication systems, information and telecommunication systems, air traffic control systems, etc. is the transition and development of higher-frequency wavelength ranges. In this regard more and more stringent requirements (in terms of spectrum, out-of-band and spurious radio emission, and in the shape of the output signal) are imposed on radio engineering devices that transmit and receive microwave radio signals. As a result, the requirements for the design and functional features of microwave electronic devices are increasing. One of these requirements is to assess the degree of compliance with the required values of dielectric properties of materials used in the design of microwave electronic devices. This requirement is justified by the fact that the electrical parameters of such microwave devices as: strip filters, power dividers, printed antennas and others, directly depend on the dielectric properties of the materials used in their substrate designs. In this regard, three main methods have now emerged for assessing the dielectric properties of materials: the resonant method, the non-resonant method, and the free space method. Aim. The aim of this article is to carry out a comparative analysis of the known methods for measuring the dielectric properties of materials in the microwave range of wavelengths and devices for their implementation. Materials and methods. The authors of the article reviewed the scientific literature of domestic and foreign publications. Results. For each of the methods for measuring the dielectric properties of materials, their main idea, practical implementation, a mathematical model for processing experimental data and areas of application are given. The advantages and disadvantages for each of the methods for measuring the dielectric properties of materials are given too. Conclusion. The applicability of each of the considered methods depends on such factors as: the shape of the investigated dielectric material, its state of aggregation, the possibility of measuring amplitude or complex transmission and reflection coefficients, the presence of an anechoic chamber, etc.


Author(s):  
Jozef Martinka ◽  
Janka Dibdiakova

This chapter deals with materials used in safety and security engineering. The most commonly used materials in this field include shielding materials, materials for protective suits, electrically insulating materials and materials for fire protection. The first part of the chapter describes the properties of materials used in the above applications. The second part of the chapter focuses on characteristics of materials that accurately describe their fire risk. The fire risk of a material is quantified by its resistance to ignition (determined generally by critical heat flux and ignition temperature) and by the impact of the fire on the environment. The impact of fire is usually determined by the heat release rate, toxicity of combustion products (primarily determined by carbon monoxide yield and for materials that contain nitrogen, also through the hydrogen cyanide yield) and the decrease of visibility in the area (depending on the geometry of the area and the smoke production rate).


Author(s):  
Gopalakrishnan T.R. Nair ◽  
Selvarani R

As the object oriented programming languages and development methodologies moved forward, a significant research effort was spent in defining specific approaches and building models for quality based on object oriented measurements. Software metrics research and practice have helped in building an empirical basis for software engineering. Software developers require objectives and valid measurement schemes for the evaluation and improvisation of product quality from the initial stages of development. Measuring the structural design properties of a software system such as coupling, inheritance, cohesion, and complexity is a promising approach which can lead to an early quality assessment. The class codes and class diagrams are the key artifacts in the development of object oriented (OO) software and it constitutes the backbone of OO development. It also provides a solid foundation for the design and development of software with a greater influence over the system that is implemented. This chapter presents a survey of existing relevant works on class code / class diagram metrics in an elaborate way. Here, a critical review of the existing work is carried out in order to identify the lessons learnt regarding the way these studies are performed and reported. This work facilitates the development of an empirical body of knowledge. The classical approaches based on statistics alone do not provide managers and developers with a decision support scheme for risk assessment and cost reduction. One of the future challenges is to use software metrics in a way that they creatively address and handle the key objectives of risk assessment and the estimation of external quality factors of the software.


Sign in / Sign up

Export Citation Format

Share Document