scholarly journals Formulation, Characterization and Evaluation against SH-SY5Y Cells of New Tacrine and Tacrine-MAP Loaded with Lipid Nanoparticles

Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2089
Author(s):  
Sara Silva ◽  
Joana Marto ◽  
Lídia Gonçalves ◽  
António J. Almeida ◽  
Nuno Vale

Tacrine (TAC) was the first FDA approved drug for the treatment of Alzheimer’s disease, resulting in increased memory and enhanced cognitive symptoms in patients. However, long-term therapy presents poor patient compliance associated with undesired side effects such as nausea, vomiting and hepatoxicity. To improve its therapeutic efficacy and decrease toxicity, the use of nanoparticles could be applied as a possible solution to delivery TAC. In this context, a project has been designed to develop a new nanostructured lipid carrier (NLC) as a delivery system for TAC and conjugate TAC and model amphipathic peptide (MAP) to decrease TAC limitations. Different formulations loaded with TAC and TAC + MAP were prepared using a combination of Compritol 888 ATO as the solid lipid and Transcutol HP as the liquid lipid component. Physical characterization was evaluated in terms of particle size, surface charge, encapsulation efficiency and in vitro drug release studies. Particle size distributions within the nanometer range were obtained with encapsulation efficiencies of 72.4% for the TAC and 85.6% for the TAC + MAP conjugate. Furthermore, cytotoxicity of all NLC formulations was determined against neuroblastoma cell line SH-SY5Y. The optimized TAC delivery system revealed low toxicity suggesting this could be a potential carrier system to deliver TAC. However, TAC + MAP conjugated even encapsulated in the NLC system demonstrated toxicity against the SH-SY5Y cell line.

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258420
Author(s):  
Ryohei Tanaka-Kanegae ◽  
Koichiro Hamada

Background Cholinergic neurons utilize choline (Ch) to synthetize acetylcholine (ACh) and contain a high-affinity Ch transporter, Ch acetyltransferase (ChAT), ACh receptors, and acetylcholinesterase (AChE). As the depletion or malfunction of each component of the cholinergic system has been reported in patients with dementia, many studies have sought to evaluate whether treatment candidates affect each of the cholinergic components. The associated changes in the cholinergic components may be reflected by intra- or extra-cellular ACh levels, with an increase in extracellular ACh levels occurring following AChE inhibition. We hypothesized that increases in intracellular ACh levels can be more sensitively detected than those in extracellular ACh levels, thereby capturing subtle effects in the cholinergic components other than AChE. The objective of this study was to test this hypothesis. Methods We developed an in vitro model to measure both extracellular and intracellular ACh levels using the human cholinergic neuroblastoma cell line, LA-N-2, which have been reported to express Ch transporter, ChAT, muscarinic ACh receptor (mAChR), and AChE. With this model, we evaluated several drug compounds and food constituents reported to improve cholinergic function through various mechanisms. In addition, we conducted western blotting to identify the subtype of mAChR that is expressed on the cell line. Results Our cell-based assay system was capable of detecting increases in extracellular ACh levels induced by an AChE inhibitor at relatively high doses, as well as increases in intracellular ACh levels following the administration of lower AChE-inhibitor doses and an mAChR agonist. Moreover, increases in intracellular ACh levels were observed even after treatment with food constituents that have different mechanisms of action, such as Ch provision and ChAT activation. In addition, we revealed that LA-N-2 cells expressed mAChR M2. Conclusion The findings support our hypothesis and indicate that the developed assay model can broadly screen compounds from drugs to food ingredients, with varying strengths and mechanisms of action, to develop treatments for ACh-relevant phenomena, including dementia and aging-related cognitive decline.


2013 ◽  
Vol 29 (5) ◽  
pp. 1714-1720 ◽  
Author(s):  
M. WAHEED ROOMI ◽  
TATIANA KALINOVSKY ◽  
NUSRATH W. ROOMI ◽  
ALEKSANDRA NIEDZWIECKI ◽  
MATTHIAS RATH

2021 ◽  
Vol 12 ◽  
Author(s):  
Dewei He ◽  
Shoupeng Fu ◽  
Ang Zhou ◽  
Yingchun Su ◽  
Xiyu Gao ◽  
...  

Microglia, the main immune cells in the brain, participate in the innate immune response in the central nervous system (CNS). Studies have shown that microglia can be polarized into pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Accumulated evidence suggests that over-activated M1 microglia release pro-inflammatory mediators that damage neurons and lead to Parkinson’s disease (PD). In contrast, M2 microglia release neuroprotective factors and exert the effects of neuroprotection. Camptothecin (CPT), an extract of the plant Camptotheca acuminate, has been reported to have anti-inflammation and antitumor effects. However, the effect of CPT on microglia polarization and microglia-mediated inflammation responses has not been reported. In our study we found that CPT improved motor performance of mice and reduced the loss of neurons in the substantia nigra (SN) of the midbrain in LPS-injected mice. In the mechanism study, we found that CPT inhibited M1 polarization of microglia and promotes M2 polarization via the AKT/Nrf2/HO-1 and NF-κB signals. Furthermore, CPT protected the neuroblastoma cell line SH-SY5Y and dopaminergic neuron cell line MN9D from damage mediated by microglia activation. In conclusion, our results demonstrate that CPT regulates the microglia polarization phenotype via activating AKT/Nrf2/HO-1 and inhibiting NF-κB pathways, inhibits neuro-inflammatory responses, and exerts neuroprotective effects in vivo and in vitro.


1998 ◽  
Vol 79 (2) ◽  
pp. 648-658 ◽  
Author(s):  
Patrizia Tosetti ◽  
Vanni Taglietti ◽  
Mauro Toselli

Tosetti, Patrizia, Vanni Taglietti, and Mauro Toselli. Functional changes in potassium conductances of the human neuroblastoma cell line SH-SY5Y during in vitro differentiation. J. Neurophysiol. 79: 648–658, 1998. The electrophysiological properties of voltage-dependent outward currents were investigated under voltage-clamp conditions in the human neuroblastoma cell line SH-SY5Y before and after in vitro differentiation with retinoic acid, by using the whole cell variant of the patch-clamp technique. Voltage steps to depolarizing potentials from a holding level of −90 mV elicited, in both undifferentiated and differentiated cells, outward potassium currents that were blocked by tetraethylammonium, but were unaffected by 4-aminopyridine, cadmium, and by shifts of the holding potentials to −40 mV. These currents activated rapidly and inactivated slowly in a voltage-dependent manner. In undifferentiated cells the threshold for current activation was about −30 mV, with a steady-state half activation potential of 19.5 mV. Maximum conductance was 4.3 nS and mean conductance density was 0.34 mS/cm2. Steady-state half inactivation potential was −13.8 mV and ∼10% of the current was resistant to inactivation. Both activation and inactivation kinetics were voltage dependent. In differentiated cells the threshold for current activation was about −20 mV, with a half potential for steady-state activation of 37.0 mV. Maximum conductance was 15.2 nS and mean conductance density was 0.78 mS/cm2. Steady-state half inactivation potential was −9.7 mV and ∼37% of the current was resistant to inactivation. Both activation and inactivation kinetics were voltage dependent. This diversity in potassium channel properties observed between undifferentiated and differentiated cells was related to differences in cell excitability. Under current-clamp conditions, the action potential repolarization rate in differentiated cells was about threefold faster than that of the abortive action potentials elicitable in undifferentiated cells. Furthermore, during prolonged stimulation, trains of spikes could be generated in some differentiated cells but not in undifferentiated cells.


PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e105481 ◽  
Author(s):  
Claudia Giovanna Leotta ◽  
Concetta Federico ◽  
Maria Violetta Brundo ◽  
Sabrina Tosi ◽  
Salvatore Saccone

2019 ◽  
Vol 78 (12) ◽  
pp. 1124-1129
Author(s):  
Jiuling Zhu ◽  
Ning Wang ◽  
Xianan Li ◽  
Xiaojing Zheng ◽  
Junli Zhao ◽  
...  

Abstract Mutations in the GRN gene coding for progranulin (PGRN) are responsible for many cases of familial frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein 43 (TDP-43)-positive inclusions (FTLD-TDP). GRN mutations create null alleles resulting in decreased progranulin protein or haploinsufficiency. FTLD-TDP with GRN mutations is characterized by lentiform neuronal intranuclear inclusions that are positive for TDP-43 in affected brain regions. In this study, by stably expressed short hairpin RNA, we established a neuroblastoma cell line with decreased PGRN level. This cell line reveals TDP-43-positive intranuclear inclusions. In addition, replacement with purified PGRN protein restores normal TDP-43 nuclear distribution. This cell model can be valuable for the study of the role of PGRN in the pathogenesis in FTLD-TDP.


Sign in / Sign up

Export Citation Format

Share Document