scholarly journals Self-Organization Regimes Induced by Ultrafast Laser on Surfaces in the Tens of Nanometer Scales

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1020
Author(s):  
Anthony Nakhoul ◽  
Claire Maurice ◽  
Marion Agoyan ◽  
Anton Rudenko ◽  
Florence Garrelie ◽  
...  

A laser-irradiated surface is the paradigm of a self-organizing system, as coherent, aligned, chaotic, and complex patterns emerge at the microscale and even the nanoscale. A spectacular manifestation of dissipative structures consists of different types of randomly and periodically distributed nanostructures that arise from a homogeneous metal surface. The noninstantaneous response of the material reorganizes local surface topography down to tens of nanometers scale modifying long-range surface morphology on the impact scale. Under ultrafast laser irradiation with a regulated energy dose, the formation of nanopeaks, nanobumps, nanohumps and nanocavities patterns with 20–80 nm transverse size unit and up to 100 nm height are reported. We show that the use of crossed-polarized double laser pulse adds an extra dimension to the nanostructuring process as laser energy dose and multi-pulse feedback tune the energy gradient distribution, crossing critical values for surface self-organization regimes. The tiny dimensions of complex patterns are defined by the competition between the evolution of transient liquid structures generated in a cavitation process and the rapid resolidification of the surface region. Strongly influencing the light coupling, we reveal that initial surface roughness and type of roughness both play a crucial role in controlling the transient emergence of nanostructures during laser irradiation.

1984 ◽  
Vol 35 ◽  
Author(s):  
W. Sinke ◽  
F.W. Saris

ABSTRACTAfter low-energy pulsed-laser irradiation of Cu-implanted silicon, a double-peak structure is observed in the Cu concentration profile, which results from the occurrence of two melts. From Cu surface segregation we calculate the depth of the surface melt. Cu segregation near the position of the amorphous-crystalline interface gives evidence for a self-propagating melt, moving from the surface region towards the crystalline substrate. Measurements of As-redistribution and of sheet resistance as a function of laser energy density in As-implanted silicon are consistent with the crystallization model which is derived from the effects as observed in Cu-implanted silicon.The results imply a large difference in melting temperature, heat conductivity and heat of melting between amorphous silicon and crystalline silicon.


2021 ◽  
Author(s):  
J.P. Colombier ◽  
A. Rudenko ◽  
A. Nakhoul ◽  
A. Abou-Saleh ◽  
C. Maurice ◽  
...  

1986 ◽  
Vol 75 ◽  
Author(s):  
S. Roorda ◽  
A. Polman ◽  
S. B. Ogale ◽  
F. W. Saris

AbstractNitridation and oxidation of titanium is achieved by pulsed laser irradiation of Ti immersed in liquid ammonia or water. Rutherford Backscattering Spectrometry shows that large amounts of nitrogen and oxygen can be incorporated in the metal surface to a depth of several 1000 Å. X-ray diffraction shows evidence of compound formation. Scanning Electron Microscopy reveals that initial surface texture is smoothed, and that stress induced cracks and holes may appear. Irradiation of Fe and Si immersed in various liquids shows that modification depends on which combination of solid and liquid is used. Influence of processing parameters such as laser-energy density and number of laser pulses on compound formation has been investigated. The process is viewed as a reactive solute incorporation in the laser melted surface layer, followed by compound formation.


1994 ◽  
Vol 9 (4) ◽  
pp. 1019-1027 ◽  
Author(s):  
M. J. DeSilva ◽  
A. J. Pedraza ◽  
D.H. Lowndes

Metallization of ceramic substrates by laser activation and subsequent electroless deposition has been demonstrated recently in aluminum nitride and alumina. However, the bond strength between the electroless copper and the ceiamic substrate is weak (less than 14 MPa). Low temperature annealing of electroless copper films deposited on substrates activated at low laser energies strongly increases the adhesion strength. The effectiveness of the annealing for improving the metal-ceramic bonding is dependent upon the laser treatment performed on the substrate prior to deposition. Faster deposition kinetics are obtained for both substrates by increasing the laser energy density. On the other hand, an increase in the laser energy density leads to poor adhesion strengths. The dislocation microstructure produced during laser irradiation in aluminum nitride is analyzed as a possible cause of laser activation. Free aluminum produced by laser irradiation of aluminum nitride and of alumina is discussed as another factor of laser activation. The chemical and microstructural changes taking place in the near-surface region as a consequence of laser-induced processes are correlated with adhesion enhancement promoted by the annealing treatment.


Author(s):  
S. Cao ◽  
A. J. Pedraza ◽  
L. F. Allard

Excimer-laser irradiation strongly modifies the near-surface region of aluminum nitride (AIN) substrates. The surface acquires a distinctive metallic appearance and the electrical resistivity of the near-surface region drastically decreases after laser irradiation. These results indicate that Al forms at the surface as a result of the decomposition of the Al (which has been confirmed by XPS). A computer model that incorporates two opposing phenomena, decomposition of the AIN that leaves a metallic Al film on the surface, and thermal evaporation of the Al, demonstrated that saturation of film thickness and, hence, of electrical resistance is reached when the rate of Al evaporation equals the rate of AIN decomposition. In an electroless copper bath, Cu is only deposited in laser-irradiated areas. This laser effect has been designated laser activation for electroless deposition. Laser activation eliminates the need of seeding for nucleating the initial layer of electroless Cu. Thus, AIN metallization can be achieved by laser patterning followed by electroless deposition.


2015 ◽  
Vol 08 (05) ◽  
pp. 1550018 ◽  
Author(s):  
Shupeng Liu ◽  
Na Chen ◽  
Fufei Pang ◽  
Zhengyi Chen ◽  
Tingyun Wang

Purpose: This work focused on the investigation the hyperthermia performance of the carbon-coated magnetic particles (CCMPs) in laser-induced hyperthermia. Materials and methods: We prepared CCMPs using the organic carbonization method, and then characterized them with transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectrophotometry, vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). In order to evaluate their performance in hyperthermia, the CCMPs were tested in laser-induced thermal therapy (LITT) experiments, in which we employed a fully distributed fiber Bragg grating (FBG) sensor to profile the tissue's dynamic temperature change under laser irradiation in real time. Results: The sizes of prepared CCMPs were about several micrometers, and the LITT results show that the tissue injected with the CCMPs absorbed more laser energy, and its temperature increased faster than the contrast tissue without CCMPs. Conclusions: The CCMPs may be of great help in hyperthermia applications.


2001 ◽  
Vol 38 (2) ◽  
pp. 293-308 ◽  
Author(s):  
Andreas Prokoph ◽  
Anthony D Fowler ◽  
R Timothy Patterson

Wavelet transform and other signal analysis techniques suggest that the planktic foraminiferal (PF) long-term evolutionary record of the last 127 Ma can be attributed to complex periodic and nonlinear patterns. Correlation of the PF extinction pattern with other geological series favors an origin of the ~30 Ma periodicity and self-organization by quasi-periodic mantle-plume cycles that in turn drive episodic volcanism, CO2-degassing, oceanic anoxic conditions, and sea-level fluctuations. Stationary ~30 Ma periodicity and a weak secular trend of ~100 Ma period are evident in the PF record, even without consideration of the mass extinction at the K–T boundary. The 27–32 Ma periodicity in the impact crater record and lows in the global sea-level curve, respectively, are ~6.5 Ma and ~2.3 Ma out of phase with PF-extinction data, although major PF-extinction events correspond to the bolide impacts at the K–T boundary and in late Eocene. Another six extinction events correspond to abrupt global sea-level falls between the late Albian and early Oligocene. Self-organization in the PF record is characterized by increased radiation rates after major extinction events and a steady number of baseline species. Our computer model of long-term PF evolution replicates this SO pattern. The model consists of output from the logistic map, which is forced at 30 Ma and 100 Ma frequencies. The model has significant correlations with the relative PF-extinction data. In particular, it replicates singularities, such as the K–T event, nonstationary 2.5–10 Ma periodicities, and phase shifts in the ~30 Ma periodicity of the PF record.


Sign in / Sign up

Export Citation Format

Share Document