scholarly journals Facile Fabrication of MnCo2O4/NiO Flower-Like Nanostructure Composites with Improved Energy Storage Capacity for High-Performance Supercapacitors

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1424
Author(s):  
Sangaraju Sambasivam ◽  
K. V. G. Raghavendra ◽  
Anil Kumar Yedluri ◽  
Hammad Mueen Arbi ◽  
Venkatesha Narayanaswamy ◽  
...  

Over the past few decades, the application of new novel materials in energy storage system has seen excellent development. We report a novel MnCo2O4/NiO nanostructure prepared by a simplistic chemical bath deposition method and employed it as a binder free electrode in the supercapacitor. The synergistic attraction from a high density of active sites, better transportation of ion diffusion and super-most electrical transportation, which deliver boost electrochemical activities. X-ray diffraction, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy have been used to investigate the crystallinity, morphology, and elemental composition of the as-synthesized precursors, respectively. Cyclic voltammetry, galvanostatic charge/discharge, and electron impedance spectroscopy have been employed to investigate the electrochemical properties. The unique nanoparticle structures delivered additional well-organized pathways for the swift mobility of electrons and ions. The as-prepared binder-free MnCo2O4/NiO nanocomposite electrode has a high specific capacity of 453.3 C g−1 at 1 Ag−1, and an excellent cycling reliability of 91.89 percent even after 4000 cycles, which are significantly higher than bare MnCo2O4 and NiO electrodes. Finally, these results disclose that the as-fabricated MnCo2O4/NiO electrode could be a favored-like electrode material holds substantial potential and supreme option for efficient supercapacitor and their energy storage-related applications.

2021 ◽  
Vol 21 (7) ◽  
pp. 3903-3908
Author(s):  
Inhan Kang ◽  
Jungwon Kang

Lithium–oxygen (Li–O2) batteries are considered as a promising high-energy storage system. However, they suffer from overpotential and low energy efficiency. This study showed that CuO growth on carbon using facile synthesis (simple dipping and heating process) reduces overpotential, thus increasing the energy efficiency. We confirmed the structure of CuO on carbon using X-ray diffraction pattern, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and field-emission transmission electron microscopy. The cathode of CuO on carbon shows an average overpotential reduction of ˜6% charge/discharge during 10 cycles in nonaqueous Li–O2 batteries. The possible reason for the reduced charge overpotential of the cathode of CuO on carbon is attributed to the formed Li2O2 of smaller particle size during discharging compared to pristine carbon.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yinghui Han ◽  
Le Li ◽  
Yunpeng Liu ◽  
Xue Li ◽  
Xiaohan Qi ◽  
...  

A simple and efficient process method for the preparation of strontium bismuth oxides (SBOs) via an impregnation-calcination method is presented. The synthesized active materials are characterized using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The electrochemical performance of the as-synthesized SBO samples is observed to decrease gradually as the strontium content is increased from 25% to 50%. The SBO sample with a Sr/Bi ratio of 1 : 3 shows the highest specific capacitance of 1228.7 F g−1 (specific capacity of 204.8 mAh g−1) at a current density of 1 A g−1 and a good cycling stability (75.1%) over 3000 charge-discharge cycles. The improved performance of the supercapacitors can be attributed to the unique structural features resulting from the addition of appropriate portions of Sr, which supports high electron conductivity and rapid ion/electron transport within the electrode and at the electrode/electrolyte interface. All the results show that the SBOs have considerable potential for use as high-performance battery-type electrodes in supercapacitors.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaili Zhang ◽  
Xinhui Xia ◽  
Shengjue Deng ◽  
Yu Zhong ◽  
Dong Xie ◽  
...  

Abstract Controllable synthesis of highly active micro/nanostructured metal electrocatalysts for oxygen evolution reaction (OER) is a particularly significant and challenging target. Herein, we report a 3D porous sponge-like Ni material, prepared by a facile hydrothermal method and consisting of cross-linked micro/nanofibers, as an integrated binder-free OER electrocatalyst. To further enhance the electrocatalytic performance, an N-doping strategy is applied to obtain N-doped sponge Ni (N-SN) for the first time, via NH3 annealing. Due to the combination of the unique conductive sponge structure and N doping, the as-obtained N-SN material shows improved conductivity and a higher number of active sites, resulting in enhanced OER performance and excellent stability. Remarkably, N-SN exhibits a low overpotential of 365 mV at 100 mA cm−2 and an extremely small Tafel slope of 33 mV dec−1, as well as superior long-term stability, outperforming unmodified sponge Ni. Importantly, the combination of X-ray photoelectron spectroscopy and near-edge X-ray adsorption fine structure analyses shows that γ-NiOOH is the surface-active phase for OER. Therefore, the combination of conductive sponge structure and N-doping modification opens a new avenue for fabricating new types of high-performance electrodes with application in electrochemical energy conversion devices.


2020 ◽  
Vol 7 (5) ◽  
pp. 1182-1189 ◽  
Author(s):  
Xianglong Huang ◽  
Jianhua Deng ◽  
Yuruo Qi ◽  
Dingyu Liu ◽  
Yuanke Wu ◽  
...  

A rechargeable K–Se battery is emerging as an energy storage system because of its much higher specific capacity than that of the traditional alkali metal-ion batteries, but is facing some critical issues and challenges.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2263 ◽  
Author(s):  
Xiaoning Wang ◽  
Dan Wu ◽  
Xinhui Song ◽  
Wei Du ◽  
Xiangjin Zhao ◽  
...  

Polyaniline has been widely used in high-performance pseudocapacitors, due to its low cost, easy synthesis, and high theoretical specific capacitance. However, the poor mechanical properties of polyaniline restrict its further development. Compared with polyaniline, functionalized carbon materials have excellent physical and chemical properties, such as porous structures, excellent specific surface area, good conductivity, and accessibility to active sites. However, it should not be neglected that the specific capacity of carbon materials is usually unsatisfactory. There is an effective strategy to combine carbon materials with polyaniline by a hybridization approach to achieve a positive synergistic effect. After that, the energy storage performance of carbon/polyaniline hybridization material has been significantly improved, making it a promising and important electrode material for supercapacitors. To date, significant progress has been made in the synthesis of various carbon/polyaniline binary composite electrode materials. In this review, the corresponding properties and applications of polyaniline and carbon hybrid materials in the energy storage field are briefly reviewed. According to the classification of different types of functionalized carbon materials, this article focuses on the recent progress in carbon/polyaniline hybrid materials, and further analyzes their corresponding properties to provide guidance for the design, synthesis, and component optimization for high-performance supercapacitors.


2018 ◽  
Author(s):  
Sender Rocha dos Santos ◽  
Juliana C. M. S. Aranha ◽  
Fernando Augusto Cerri ◽  
Thiago Chiachio do Nascimento ◽  
Maria de Fátima Negreli Campos Rosolem ◽  
...  

2018 ◽  
Vol 11 (10) ◽  
pp. 2828-2832 ◽  
Author(s):  
Xiaona Li ◽  
Jianwen Liang ◽  
Xia Li ◽  
Changhong Wang ◽  
Jing Luo ◽  
...  

All-solid-state Li–Se batteries are a promising high-energy storage system and provide new insights into solid-state electrode/electrolyte interfacial chemistry.


Author(s):  
Yi Zhang ◽  
Zhaopeng Sun ◽  
Xiangyue Kong ◽  
Yilin Lin ◽  
Weiwei Huang

Organic materials are considered to have broad application prospects in energy storage system due to their strong designability and abundant resources. Here, we report a triquinoxalinylene derivative tribenzoquinoxaline-5, 10-dione (3BQ)...


Sign in / Sign up

Export Citation Format

Share Document