scholarly journals Improvement of Temperature and Optical Power of an LED by Using Microfluidic Circulating System of Graphene Solution

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1719
Author(s):  
Yung-Chiang Chung ◽  
Han-Hsuan Chung ◽  
Shih-Hao Lin

Electric devices have evolved to become smaller, more multifunctional, and increasingly integrated. When the total volume of a device is reduced, insufficient heat dissipation may result in device failure. A microfluidic channel with a graphene solution may replace solid conductors for simultaneously supplying energy and dissipating heat in a light emitting diode (LED). In this study, an automated recycling system using a graphene solution was designed that reduces the necessity of manual operation. The optical power and temperature of an LED using this system was measured for an extended period and compared with the performance of a solid conductor. The temperature difference of the LED bottom using the solid and liquid conductors reached 25 °C. The optical power of the LED using the liquid conductor was higher than that of the solid conductor after 120 min of LED operation. When the flow rate was increased, the temperature difference of the LED bottom between initial and 480 min was lower, and the optical power of the LED was higher. This result was attributable to the higher temperature of the LED with the solid conductor. Moreover, the optical/electric power transfer rate of the liquid conductor was higher than that of the solid conductor after 120 min of LED operation, and the difference increased over time.

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2271
Author(s):  
Nan Guan ◽  
Nuño Amador-Mendez ◽  
Arup Kunti ◽  
Andrey Babichev ◽  
Subrata Das ◽  
...  

We analyze the thermal behavior of a flexible nanowire (NW) light-emitting diode (LED) operated under different injection conditions. The LED is based on metal–organic vapor-phase deposition (MOCVD)-grown self-assembled InGaN/GaN NWs in a polydimethylsiloxane (PDMS) matrix. Despite the poor thermal conductivity of the polymer, active nitride NWs effectively dissipate heat to the substrate. Therefore, the flexible LED mounted on a copper heat sink can operate under high injection without significant overheating, while the device mounted on a plastic holder showed a 25% higher temperature for the same injected current. The efficiency of the heat dissipation by nitride NWs was further confirmed with finite-element modeling of the temperature distribution in a NW/polymer composite membrane.


2007 ◽  
Vol 989 ◽  
Author(s):  
Gong-Ru Lin ◽  
Chun-Jung Lin

AbstractA Si nanocrystal based metal-oxide-semiconductor light-emitting diode (MOSLED) on Si nano-pillar array is preliminarily demonstrated. Rapid self-aggregation of Ni nanodots on Si substrate covered with a thin SiO2 buffered layer is employed as the etching mask for obtaining Si nano-pillar array. Dense Ni nanodots with size and density of 30 nm and 2.8×10 cm-2, respectively, can be formatted after rapid thermal annealing at 850°C for 22 s. The nano-roughened Si surface contributes to both the relaxation of total-internal reflection at device-air interface and the Fowler-Nordheim tunneling enhanced turn-on characteristics, providing the MOSLED a maximum optical power of 0.7 uW obtained at biased current of 375 uA. The optical intensity, turn-on current, power slope and external quantum efficiency of the MOSLED are 140 μW/cm2, 5 uA, 2+-0.8 mW/A and 1×10-3, respectively, which is almost one order of magnitude larger than that of a same device made on smooth Si substrate.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Xin Li ◽  
Xu Chen ◽  
Guo-Quan Lu

As a solid electroluminescent source, white light emitting diode (LED) has entered a practical stage and become an alternative to replace incandescent and fluorescent light sources. However, due to the increasing integration and miniaturization of LED chips, heat flux inside the chip is also increasing, which puts the packaging into the position to meet higher requirements of heat dissipation. In this study, a new interconnection material—nanosilver paste is used for the LED chip packaging to pursue a better optical performance, since high thermal conductivity of this material can help improve the efficiency of heat dissipation for the LED chip. The bonding ability of this new die-attach material is evaluated by their bonding strength. Moreover, high-power LED modules connected with nanosilver paste, Sn3Ag0.5Cu solder, and silver epoxy are aged under hygrothermal aging and temperature cycling tests. The performances of these LED modules are tested at different aging time. The results show that LED modules sintered with nanosilver paste have the best performance and stability.


2015 ◽  
Vol 62 (11) ◽  
pp. 6925-6933 ◽  
Author(s):  
Huan Ting Chen ◽  
Yuk Fai Cheung ◽  
Hoi Wai Choi ◽  
Siew Chong Tan ◽  
S. Y. Hui

2011 ◽  
Vol 687 ◽  
pp. 215-221
Author(s):  
Yuan Yuan Han ◽  
Hong Guo ◽  
Xi Min Zhang ◽  
Fa Zhang Yin ◽  
Ke Chu ◽  
...  

With increasing of the input power of the chips in light emitting diode (LED), the thermal accumulation of LEDs package increases. Therefore solving the heat issue has become a precondition of high power LED application. In this paper, finite element method was used to analyze the thermal field of high power LEDs. The effect of the heatsink structure on the junction temperature was also investigated. The results show that the temperature of the chip is 95.8°C which is the highest, and it meets the requirement. The conductivity of each component affects the thermal resistance. Convective heat exchange is connected with the heat dissipation area. In the original structure of LEDs package the heat convected through the substrate is the highest, accounting for 92.58%. Three heatsinks with fin structure are designed to decrease the junction temperature of the LEDs package.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ezzah Azimah Alias ◽  
Muhammad Esmed Alif Samsudin ◽  
Steven DenBaars ◽  
James Speck ◽  
Shuji Nakamura ◽  
...  

Purpose This study aims to focus on roughening N-face (backside) GaN substrate prior to GaN-on-GaN light-emitting diode (LED) growth as an attempt to improve the LED performance. Design/methodology/approach The N-face of GaN substrate was roughened by three different etchants; ammonium hydroxide (NH4OH), a mixture of NH4OH and H2O2 (NH4OH: H2O2) and potassium hydroxide (KOH). Hexagonal pyramids were successfully formed on the surface when the substrate was subjected to the etching in all cases. Findings Under 30 min of etching, the highest density of pyramids was obtained by NH4OH: H2O2 etching, which was 5 × 109 cm–2. The density by KOH and NH4OH etchings was 3.6 × 109 and 5 × 108 cm–2, respectively. At standard operation of current density at 20 A/cm2, the optical power and external quantum efficiency of the LED on the roughened GaN substrate by NH4OH: H2O2 were 12.3 mW and 22%, respectively, which are higher than its counterparts. Originality/value This study demonstrated NH4OH: H2O2 is a new etchant for roughening the N-face GaN substrate. The results showed that such etchant increased the density of the pyramids on the N-face GaN substrate, which subsequently resulted in higher optical power and external quantum efficiency to the LED as compared to KOH and NH4OH.


2015 ◽  
Vol 7 (2) ◽  
pp. 283-286
Author(s):  
Jiang-Yong Zhang ◽  
Lei-Ying Ying ◽  
Ming Chen ◽  
Wen-Jie Liu ◽  
Jian Yu ◽  
...  

2011 ◽  
Vol 216 ◽  
pp. 106-110 ◽  
Author(s):  
Hong Qin ◽  
Da Liang Zhong ◽  
Chang Hong Wang

Thermal management is an important issue for light emitting diodes’ utilization. For high power light emitting diode (LED), active heat dissipation method plays a vital role. As a new cooling device, thermoelectric cooler (TEC) is applied in LED packaging for the precisely temperature controlled advantage. In order to evaluate the thermal performance of the TEC packaging designs in LED, experimental measurement is used to assess the chip’s junction temperature of three different cooling models, which include the heatsink model, the heatsink and fan model and the TEC, heatsink and fan model. Based on the research, it is better to apply TEC cooling methods with the power dissipation of LED less than 35 W and the wind speed is 3.6 m/s. However, the power dissipation of TEC itself plays a vital role of the total power dissipation of LED packaging. The results of economic analysis shows that the LED integrated with TEC package achieves 22.34% and 44.73% electric energy saving under the condition of 20 W and 30 W power dissipation of the LED chip contrasts to the fluorescent lamp, but sacrifices 2.71% electric power under the condition of 10 W power dissipation of the LED chip.


Sign in / Sign up

Export Citation Format

Share Document